\begin{frame}{Right Linear Grammars $\iff$ Regular Languages}
\begin{block}{Theorem}
Language $L$ is \emph{regular} \\
\hfill $\iff$ there is a \emph{right linear grammar} $G$ with $L(G)=L$
\end{block}
\pause\bigskip
\begin{proof}
The proof consists of two directions:
\begin{itemize}
\medskip
\item $(\Rightarrow)$
Translating NFAs to right linear grammars.
\medskip
\item $(\Leftarrow)$
Translate right linear grammars to NFAs.
\medskip
\end{itemize}
We have already seen both constructions.
\end{proof}
\end{frame}
\subsection{Left Linear Grammars}
\themex{Left Linear Grammars}