\begin{frame}{Right Linear Grammars}
\begin{block}{}
A grammar $G=(V,T,S,P)$ is \emph{right linear}
if all production rules are of the form
\begin{talign}
\alert{A} ~\alert{\to}~ \alert{uB}
\hspace*{1cm} \mbox{or} \hspace*{1cm}
\alert{A} ~\alert{\to}~ \alert{u}
\end{talign}
with $A,B \in V$ and $u \in T^*$.
\smallskip
Moreover $G$ is \emph{\alert{strictly} right linear}
if $\alert{|u| \le 1}$ (i.e. $\alert{u \in (T \cup \{\lambda\})}$).
\end{block}
\pause\medskip
\begin{exampleblock}{}
Construct a right linear grammar $G$ such that
\begin{talign}
L(G)=\{a,b\}^*\,\{aa\}\,\{b\}^*
\end{talign}
\end{exampleblock}
\pause\medskip
\begin{exampleblock}{}
Construct a right linear grammar $G$ such that
\begin{talign}
L(G) = \{ab\}\,\big(\{a\}^*\,\{cb\}\big)^*\,\{b\}
\end{talign}
\end{exampleblock}
\end{frame}