\begin{frame}{Grammar Derivations} \begin{block}{} If $x \to y$ is a production rule, then we have a \emph{derivation step} \begin{talign} uxv \Rightarrow uyv \end{talign} for every $u,v \in (V \cup T)^*$. \end{block} \pause \begin{exampleblock}{} $G = (\{S\}, \{a,b\}, S, P)$, where $P$ consists of \begin{talign} S &\to aSb & S &\to \lambda \end{talign} \pause\vspace{-6mm} Example derivations: \begin{talign} \mpause[1]{S} \mpause{&\Rightarrow \lambda} & \mpause[11]{S &\Rightarrow^* \lambda} \\ \mpause[3]{S} \mpause{&\Rightarrow aSb} \mpause{\Rightarrow ab} & \mpause[11]{S &\Rightarrow^* ab} \\ \mpause[6]{S} \mpause{&\Rightarrow aSb} \mpause{\Rightarrow aaSbb} \mpause{\Rightarrow aabb} & \mpause[11]{S &\Rightarrow^* aabb} \end{talign}\vspace{-2ex} \end{exampleblock} \pause[13] \begin{goal}{} A \emph{derivation} $\Rightarrow^*$ is the reflexive, transitive closure of $\Rightarrow$. \end{goal} Thus there is a derivation $u \Rightarrow^* v$ if $v$ can be obtained from $u$ by zero or more derivation steps. \end{frame}