\begin{frame}{Grammars}
\begin{block}{}
A \emph{grammar} $G = (V,T,S,P)$ consists of:
\begin{itemize}
\item finite set $V$ of \emph{non-terminals} (or \emph{variables})\\[.5ex]
\item finite set $T$ of \emph{terminals}\\[.5ex]
\item a \emph{start symbol} $S \in V$\\[.5ex]
\item finite set $P$ of \emph{production rules} $x \to y$ where
\begin{itemize}
\item $x \in (V \cup T)^+$ containing at least one symbol from $V$
\item $y \in (V \cup T)^*$
\end{itemize}
\end{itemize}
\end{block}
\begin{exampleblock}{}
In the previous example:
\begin{itemize}
\item variables: $\langle$sentence$\rangle$, $\langle$article$\rangle$, $\langle$noun$\rangle$, $\langle$verb$\rangle$
\item terminals: the, a, farmer, cow, milks
\item starting symbol: $\langle$sentence$\rangle$
\end{itemize}
\end{exampleblock}
\pause
\begin{block}{}
A grammar is \emph{context-free} if $x \in V$ for every rule $x \to y$.
\end{block}
\end{frame}