\begin{frame}{NFAs with a Single Starting State}
\begin{goal}{}
For every NFA $M$ there is an NFA $N$ such that
$L(M) = L(N)$
and $N$ has a \emph{single starting state}.
\end{goal}
\pause
\begin{block}{Construction}
Let $N = (Q,\Sigma,\delta,S,F)$ be an NFA.
\pause\medskip
Define $M$ the be obtained from $N$ as follows
\begin{itemize}
\pause
\item add a fresh state $q_0$,
\pause
\item add transitions $q_0 \stackrel{\lambda}{\to} q$ for every $q \in S$, and
\pause
\item make $q_0$ the only starting state of $M$.
\end{itemize}
\pause
Then $M$ has a single starting state and $L(N)= L(M)$.
\end{block}
\pause
\begin{goal}{Convention}
We denote NFAs $(Q,\Sigma,\delta,S,F)$ with a single starting state $S = \{\, q_0 \,\}$ by $(Q,\Sigma,\delta,q_0,F)$.
\end{goal}
\end{frame}