\begin{frame}{NFAs Accepting Languages}
\begin{block}{}
The \emph{language accepted by} NFA $M = (Q,\Sigma,\delta,S,F)$ is
\begin{talign}
L(M)
&= \{\, w \in \Sigma^* \mid (q_0,w) \vdash^* (q,\lambda) \text{ with } q_0 \in S,\; q \in F \,\} \\
&= \{\, w \in \Sigma^* \mid q_0 \apath{w} q \text{ with } q_0 \in S,\; q \in F \,\}
\end{talign}
\end{block}
\pause
\begin{center}
\vspace{-.5ex}
\input{tikz/nfa1.tex}
\vspace{-1.5ex}
\end{center}
\alert{Paths are not unique!}
\pause
Paths for input word $ab$:
\pause
\begin{talign}
&(q_0,ab) \vdash (q_1,b) \vdash (q_1,\lambda) && \mpause[1]{\text{(ends in accepting state)}}\\
&(q_0,ab) \vdash (q_1,b) \vdash (q_2,\lambda) \\
&(q_2,ab) \vdash (q_0,b) \vdash (q_1,b) \vdash (q_1,\lambda) && \mpause[1]{\text{(ends in accepting state)}} \\
&(q_2,ab) \vdash (q_0,b) \vdash (q_1,b) \vdash (q_2,\lambda)
\end{talign}
\pause
\emph{One accepting path suffices!}
So $ab$ is accepted.
\end{frame}