\begin{frame}{NFAs Accepting Languages} \begin{block}{} The \emph{language accepted by} NFA $M = (Q,\Sigma,\delta,S,F)$ is \begin{talign} L(M) &= \{\, w \in \Sigma^* \mid (q_0,w) \vdash^* (q,\lambda) \text{ with } q_0 \in S,\; q \in F \,\} \\ &= \{\, w \in \Sigma^* \mid q_0 \apath{w} q \text{ with } q_0 \in S,\; q \in F \,\} \end{talign} \end{block} \pause \begin{center} \vspace{-.5ex} \input{tikz/nfa1.tex} \vspace{-1.5ex} \end{center} \alert{Paths are not unique!} \pause Paths for input word $ab$: \pause \begin{talign} &(q_0,ab) \vdash (q_1,b) \vdash (q_1,\lambda) && \mpause[1]{\text{(ends in accepting state)}}\\ &(q_0,ab) \vdash (q_1,b) \vdash (q_2,\lambda) \\ &(q_2,ab) \vdash (q_0,b) \vdash (q_1,b) \vdash (q_1,\lambda) && \mpause[1]{\text{(ends in accepting state)}} \\ &(q_2,ab) \vdash (q_0,b) \vdash (q_1,b) \vdash (q_2,\lambda) \end{talign} \pause \emph{One accepting path suffices!} So $ab$ is accepted. \end{frame}