\begin{frame}{NFAs Reading Words}
Let $M = (Q,\Sigma,\delta,S,F)$ be a NFA.
% \begin{block}{}
% A \emph{configuration} of $M$ is a pair $(q,w)$ with $q \in Q$ and $w \in \Sigma^*$.
% \end{block}
\begin{block}{}
The \emph{step relation $\vdash$} of $M$ is defined on configurations by
\begin{talign}
(q,\alert{\alpha} w) \vdash (q',w) \quad \text{if $\alert{q' \in} \delta(q,\alert{\alpha})$ with $\alpha \in \Sigma \alert{\cup\{\lambda\}}$}
\end{talign}
\end{block}
\pause
Note that if $\alpha = \lambda$, then
\begin{itemize}
\item the state changes ($q$ to $q'$), but
\item the input word stays the same ($\lambda w = w$).
\end{itemize}
\pause\medskip
\begin{exampleblock}{}
\begin{center}
\vspace{-.5ex}
\input{tikz/nfa1.tex}
\vspace{-1.5ex}
\end{center}
\begin{talign}
(q_0,abbab)
&\vdash (q_1,bbab) \vdash (q_1,bab) \vdash (q_2,ab) \\
&\vdash (q_0,b) \vdash (q_1,b) \vdash (q_1,\lambda)
\end{talign}
\end{exampleblock}
\end{frame}