\begin{frame}{Finite Languages are Regular}
\begin{block}{Theorem}
Every \emph{finite} language $L$ regular.
\end{block}
\pause
\begin{block}{Construction}
Let $N$ be the length of the longest word in $L$.
\pause\bigskip
Define the DFA $M = (Q,\Sigma,\delta,q_\lambda,F)$ by
\begin{itemize}
\pause
\item $Q = \{\, q_w \mid w \in \Sigma^*,\; |w| \le N \,\} \cup \{\, q_\bot \,\}$
\pause
\item $F = \{\, q_w \mid w \in L \,\}$
\pause
\item
the transition function $\delta$ is defined by
\begin{talign}
\delta(q_w,a) =
\begin{cases}
q_{wa} &\text{if $|wa| \le N$},\\
q_\bot &\text{if $|wa| > N$}
\end{cases}
&&
\delta(q_\bot,a) = q_\bot
\end{talign}
for every $w \in \Sigma^*$ with $|w| \le N$ and $a \in \Sigma$
\end{itemize}
\end{block}
\end{frame}
\themex{Nondeterministic Finite Automata}