\begin{frame}{Regular Languages: Complement}
\begin{block}{Theorem}
If $L$ is a regular language, then \alert{$\overline{L}$} is also regular.
\end{block}
\pause
\begin{proof}
Let $L$ be regular.
\medskip\pause
Then there exists a DFA $M = (Q,\Sigma,\delta,q_0,F)$ with $L(M) = L$.
\medskip\pause
Then $N = (Q,\Sigma,\delta,q_0,\alert{Q\setminus F})$ is a DFA with $L(N) = \overline{L}$.
\bigskip\pause
Here it is \alert{important} that for every input word $w$:
\begin{itemize}
\item There is precisely one path starting at $q_0$ labelled with $w$.
\pause
\item There is \alert{precisely one state $q$ with $q_0 \apath{w} q$}.
\pause Thus
\begin{talign}
w &\in L \iff w \in L(M) \iff q \in F\\
\mpause[1]{ w &\in \overline{L} \iff w \in \overline{L(M)} \iff q \in (Q\setminus F) \iff w \in L(N) }
\end{talign}
\end{itemize}
\end{proof}
\end{frame}