26/122
\begin{frame}{Exercise}
\begin{goal}{}
An arrow with label \alert<1>{$a,b$} is shorthand for two arrows:
one with label $a$ and one with label $b$.
\end{goal}

\begin{minipage}{.40\textwidth}
\begin{tikzpicture}[default,node distance=20mm,->]
\node (q0) [fstate] {$z_0$}; \draw ($(q0) + (-10mm,0mm)$) -- (q0);
\node (q2) [state,right of=q0] {$z_2$};
\begin{scope}[node distance=20mm]
\node (q1) [fstate,above of=q2] {$z_1$};
\end{scope}

\draw (q0) to node [label,above left] {$a$} (q1);
\draw (q0) to[bend left=10] node [label,above] {$b$} (q2);
\draw (q1) to[bend left=10] node [label,right] {\alert<1>{$a,b$}} (q2);
\draw (q2) to[bend left=10] node [label,left] {$a$} (q1);
\draw (q2) to[bend left=10] node [label,below] {$b$} (q0);
\end{tikzpicture}
\end{minipage}\pause%
\begin{minipage}{.60\textwidth}
\begin{exampleblock}{}
What is this DFA?
\begin{itemize}\setlength{\itemsep}{-.5ex}
\medskip
\item states $Q = \mpause[1]{\{\,z_0,z_1,z_2\,\}}$
\medskip
\item alphabet $\Sigma = \mpause{\{\,a,b\,\}}$
\medskip
\item transition function $\delta : Q \times \Sigma \to Q$\,:
\begin{center}
{\renewcommand{\arraystretch}{1}
\begin{tabular}{c|cccc}
$\delta$ & $z_0$ & $z_1$ & $z_2$\\
\hline
$a$ & \mpause{$z_1$} & \mpause{$z_2$} & \mpause{$z_1$} \\
$b$ & \mpause{$z_2$} & \mpause{$z_2$} & \mpause{$z_0$}
\end{tabular}}
\end{center}
\medskip
\item
starting state \mpause{$z_0$}
\medskip
\item
final states $F = \mpause{\{\,z_0,z_1\,\}}$
\medskip
\end{itemize}
\end{exampleblock}
\end{minipage}
\end{frame}