\begin{frame}{DFAs Reading Words}
Let $M = (Q,\Sigma,\delta,q_0,F)$ be a DFA.
\begin{block}{}
A \emph{configuration} of $M$ is a pair $\alert{(q,w)}$ with $q \in Q$ and $w \in \Sigma^*$.
\end{block}
So $(q,w)$ means the automaton is in state $q$ and reads word $w$.
\begin{block}{}
The \emph{step relation $\vdash$} of $M$ is defined on configurations by
\begin{talign}
\alert{(q,aw) \vdash (q',w)} \quad \text{if $\delta(q,a)=q'$}
\end{talign}
\end{block}
\pause
\begin{exampleblock}{}
\edfa
Then
\(
(q_0,abba) \vdash
\mpause[1]{ (q_0,bba) \vdash }
\mpause{ (q_1,ba) \vdash }
\mpause{ (q_0,a) \vdash }
\mpause{ (q_0,\lambda). }
\)
\end{exampleblock}
\pause\pause\pause\pause\pause
\begin{block}{}
We define $\alert{\vdash^*}$ as the \emph{reflexive transitive closure of $\vdash$}.
\end{block}
\begin{exampleblock}{}
Continuing the above example, we have $(q_0,abba) \vdash^* (q_0,\lambda)$.
\end{exampleblock}
\end{frame}