\begin{frame}{Operations on Languages}
\begin{alertblock}{}
Attention: $L^2 = \{uv \mid u,v \in L \} \neq \{ uu \mid u \in L \}$\; !
\end{alertblock}
\pause\bigskip
\begin{block}{Kleene star}
\begin{malign}
\alert{L^*} &\;\;=\;\; \bigcup_{i=0}^\infty \; L^i \;\;=\;\; L^0 \cup L^1 \cup L^2 \cup L^3 \cup \cdots\\
\alert{L^+} &\;\;=\;\; \bigcup_{i=1}^\infty \; L^i \;\;=\;\; L^1 \cup L^2 \cup L^3 \cup \cdots
\end{malign}
\end{block}
Thus $L^*=L^+\cup\{\lambda\}$.
\begin{exampleblock}{}
Let $L = \{\, a,bb \,\}$. Then
\begin{talign}
L^* = \{\, \lambda, a, bb, aa, abb, bba, bbbb, aaa, aabb, abba, abbbb \ldots\,\}
\end{talign}
\end{exampleblock}
\begin{goal}{}
$L^*$ are all the words that you can build from `\textbf{building blocks}' $L$.
\end{goal}
\bigskip
\end{frame}