\begin{frame}{Operations on Languages}
\begin{block}{Concatenation}
The concatenation of languages $L_1$ and $L_2$ is defined as
\begin{talign}
\alert{L_1 L_2} &= \{\, xy \mid x \in L_1 \wedge y \in L_2 \,\}
\end{talign}
\end{block}
\begin{exampleblock}{}
Let $L_1 = \{\, a,\; bb \,\}$ and $L_2 = \{\, ab,\; ba \,\}$. Then
\begin{talign}
L_1 L_2 = \{\,aab,\; aba,\; bbab,\; bbba\,\}
\end{talign}
\end{exampleblock}
\pause\medskip
\begin{block}{Power}
The $n$-th power of a language $L$ is defined by induction on $n$:
\begin{talign}
\alert{L^0} &= \{\, \lambda \,\} &
\alert{L^{n+1}} &= L^n L \qquad (n \geq 0)
\end{talign}
\end{block}
\begin{exampleblock}{}
Let $L = \{\, a,\; bb \,\}$. Then
\begin{talign}
L^2 &= \{\, aa, abb, bba, bbbb\,\}\\
L^3 &= \{\, aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb \,\}
\end{talign}
\end{exampleblock}
\end{frame}