\begin{frame}{Operations on Languages} \begin{block}{Set operations} A language is a \emph{set} of words. \smallskip So the usual set operations have meaning for languages: \centerline{$\in$,\; $\subseteq$,\; $\cap$,\; $\cup$,\; $\setminus$,\; \ldots} \end{block} \pause \begin{exampleblock}{}\vspace{-.5ex} \begin{malign} ba \in \{\,a,aba,ba\,\} && ab \not\in \{\,a,aba,ba\,\} \end{malign} \end{exampleblock} \pause \begin{exampleblock}{}\vspace{-.5ex} \begin{malign} \{\,a,ba\,\} \subseteq \{\,a,aba,ba\,\} && \{\,a,b\,\} \not\subseteq \{\,a,aba,ba\,\} \end{malign} \end{exampleblock} \pause \begin{exampleblock}{}\vspace{-.5ex} \begin{malign} \{\,a,aba,ba\,\} \cap \{\,a, ab, ba \,\} = \{\,a,ba\,\} \end{malign} \end{exampleblock} \pause \begin{exampleblock}{}\vspace{-.5ex} \begin{malign} \{\,a,aba,ba\,\} \cup \{\,a, ab, ba \,\} = \{\,a,ab,aba,ba\,\} \end{malign} \end{exampleblock} \pause \begin{exampleblock}{}\vspace{-.5ex} \begin{malign} \{\,a,aba,ba\,\} \setminus \{\,a, ab, ba \,\} = \{\,aba\,\} \end{malign} \end{exampleblock} \end{frame}