\begin{frame}{Formal Languages}
\begin{goal}{}
A \emph{formal language} is a \emph{set of words}.
\end{goal}
\pause\bigskip
\begin{block}{}
A \emph{(formal) language} $L$ is a subset of $\Sigma^*$, that is, $L \subseteq \Sigma^*$.
\end{block}
Here $\Sigma^*$ is the set of all words over $\Sigma$.
\pause\bigskip
\begin{exampleblock}{}
The set of all parseable C programs form a language.
\end{exampleblock}
\pause
\begin{exampleblock}{}
$\{\,ab,\; aab,\; bbaaabb\,\}$ is a finite language over $\Sigma = \{a,b\}$
\end{exampleblock}
\pause
\begin{exampleblock}{}
$\{\,ab^n a \mid n \geq 1\,\}$ is an infinite language over $\Sigma = \{a,b\}$:
\begin{talign}
\{\,aba,\; abba,\; abbba,\; abbbba,\; \ldots\,\}
\end{talign}
\end{exampleblock}
\pause
\begin{exampleblock}{}
$\{\, a^nb^n \mid n \geq 0 \,\}$ is an infinite language over $\Sigma = \{a,b\}$:
\begin{talign}
\{\,\lambda,\; ab,\; aabb,\; aaabbb,\; aaaabbbb,\; \ldots \,\}
\end{talign}
\end{exampleblock}
\end{frame}