\begin{frame}{Operations on Words}
\begin{block}{Power}
The power \alert{$v^k$} consists of $k$ concatenations of $v$'s:
\begin{talign}
v^0 &= \lambda &
v^{k+1} &= v^k v
\end{talign}
\end{block}
\begin{exampleblock}{}
Let $w = aba$. Then\vspace{-1ex}
\begin{align*}
w^0 &= \lambda &
w^1 &= aba &
w^2 &= abaaba &
w^3 &= abaabaaba
\end{align*}
\end{exampleblock}
\pause\smallskip
\begin{block}{Reverse}
The reverse of $a_1 \cdots a_n$ is
\begin{talign}
\alert{(a_1 \cdots a_n)^R}=a_n \cdots a_1
\end{talign}
The reverse can be inductively defined
\begin{talign}
\lambda^R &= \lambda &
(va)^R &= a(v^R)
\end{talign}
\end{block}
\begin{exampleblock}{}
The reverse of $abcb$ is $bcba$.
\end{exampleblock}
\end{frame}
\subsection{Languages as Sets}
\themex{Languages}