
Endrullis 1

NWO Vidi Grant:

Automata Transforming Streams

Jörg Endrullis

Vrije Universiteit Amsterdam, Netherlands

Vernieuwingsimpuls 2018
Innovational Research Incentives Scheme
Exacte en Natuurwetenschappen (ENW)

Endrullis 2

The central objective of this proposal is the study of finite automata for transforming streams.

Streams. In recent times, computer science, logic and mathematics have extended the focus of
interest from finite data types to include infinite data types, of which the prototypical example
is that of infinite sequences of symbols, or streams. Streams are of paramount importance in
a wide range of fields, from formal languages to pure mathematics and physics: they appear
in functional programming, formal language theory, in the mathematics of dynamical systems,
fractals and number theory, in business (financial data streams) and in physics (signal processing).
As Democritus in his adagium Panta Rhei already observed, streams are ubiquitous.

mathematics

number theory

dynamic systems

fractals

functional
programming

communicating
processes

physics,
engineering

embedded
devices

signal
processing

financial
data streams

formal
languages

combinatorics
on streams

Finite automata as transformers. Finite automata play a central role in computer science and
mathematics, and have a broad range of applications in industry, ranging from text processing and
compiler construction to software and hardware design and verification.

Automata can be used as acceptors and transducers. As acceptors they simply accept or reject
input words, and thereby define a language of accepted words. Transducers, on the other hand,
have a much richer output. They transform input words into output words, and thereby realise a
function on words.

q0

q1

q2

0|ε

1|ε

1|10|1

1|0

0|0

Figure 1 – A finite state transducer realising the difference of consecutive bits modulo 2.

Figure 1 depicts an example of a finite state transducer (FST) [5, 112]. A label ‘a |w’ along an
edge indicates that the input letter is a and the output word is w. The transducer reads the input
stream letter by letter, in each step producing a piece of the output and changing its state. So the
total output word is the concatenation of all the output words encountered along the edges.

The transducer given in Figure 1 transforms the input word 011 into the output word 10. When
the input is an infinite sequence, a stream, the output of the transducer will be a stream as well. For

Endrullis 3

example, the automaton transforms the Thue–Morse sequence M (see ‘Background on streams’
on page 10) to the period doubling sequence PD:

0 1 1 0 1 0 0 1 . . . = M→ 1 0 1 1 1 0 1 . . . = PD

In a finite state transducer, the output word given by a transition can have arbitrary length (also
empty). Thereby FSTs generalise the class of Mealy machines; the latter are restricted to output
precisely one letter in each step. The transducer shown in Figure 1 is not a Mealy machine, and
there exists no Mealy machine implementing this transformation.

State of the art

The state of the art of research on finite automata is summarised in Figure 2.

automata as acceptors automata as transducers

finite words well-studied " well-studied "
infinite words (streams) well-studied " hardly studied %

Figure 2 – State of the art in automata theory.

Automata on finite words have been studied both as acceptors and transducers. The well-
known Chomsky hierarchy relates classes of languages to different forms of automata and gram-
mars. For instance, finite state automata, pushdown automata and Turing machines accept the
classes of regular languages, context-free languages and computable languages, respectively.
Also transducers for finite words are well-understood: finite state transducers give rise to the
rational functions, and Turing machines to the computable functions.

For streams, automata have been studied extensively for defining single streams and for defin-
ing languages of streams (as acceptors). Concerning the former, the key notion is that of automatic
sequences [5] presenting deep connections between computer science and number theory. A se-
quence is k-automatic if there exists a finite automaton that computes its n-th element when given
the base-k representation of n as input.

Automata for defining languages of streams (acceptors) are known as stream automata or ω-
automata. They play a crucial role in model checking and formal verification as they allow for
describing the (un)acceptable behaviours of non-terminating systems such as operating systems,
control systems or hardware. There are various versions of stream automata, in particular Büchi,
Muller, Rabin and parity automata.

Surprisingly, finite automata for transforming streams have hardly been studied, except for Tur-
ing machines, for which the ensuing hierarchy of stream degrees is well-known as Turing degrees
(see below for further information). Beyond Turing machines, there has been almost no research
on the power of finite automata, such as finite state transducers or Mealy machines, for trans-
forming streams. The exceptions are the papers [108, 12, 31]. M. Dekking [31] has shown that
every finite state transduct of a morphic stream is again morphic (or finite). G. Rayna [108] and
A. Belov [12] have some interesting observations on streams transformations by Mealy machines.

Endrullis 4

Central objective and methodology

The main goal of this project can be summarised as follows.

Goal The central objective of this project is to develop fundamental theory to reason
about the power and limitations of finite automata for transforming streams.

Currently, there is a lack of theory about stream transducers. Even for simple examples of streams,
there exist no techniques to determine whether there exists a finite automaton transforming one
stream into the other:

Q1 Consider the period doubling sequence PD and drop every third element:

PD = 1011 1010 1011 1011 1011 · · ·
X = 10 1 1 10 01 10 1 1 11 · · ·

It is easy to find a finite state transducer that transforms PD into X. Is the reverse also
possible, or is information irrevocably lost?

Surprisingly, automata theory is not ready to answer such simple questions. Although finite state
transducers are very simple and elegant devices, we hardly understand their power for transforming
streams. This project aims to develop the necessary theory about finite automata transforming
streams. As transformational devices, we consider different well-known automata models:

Goal We envisage to study the power of the following automata models for transform-
ing streams:

(i) finite state transducers (including the variants ‘non-erasing’ and ‘uniform’),

(ii) Mealy machines, and

(iii) pushdown transducers (extension of finite state transducers with a stack).

To achieve these goals, it is crucial to go beyond existing methodologies, in particular by
finding connections between mathematics and computer science.

Goal Develop new techniques to reason about finite automata. To this end, we envisage
to build bridges between automata theory and different fields of mathematics and
computer science.

We have already taken the first steps towards this goal. Although streams and finite state transduc-
ers are discrete objects, we demonstrated in [53, 54] that techniques from continuous mathematics
can be used to reason about the power and limitations of finite state transducers. To be precise, we
have used the following methods from linear algebra and analysis:

(a) continuity,
(b) Vandermonde matrices,

Endrullis 5

(c) invertibility of matrices, and
(d) the generalised mean inequality.

We have used (a)–(c) to establish that there exist transducers that realise certain transformations on
streams. This allowed us to conclude that there is an infinite number of atoms (non-trivial, minimal
degrees) in the Transducer degrees (see below). We have employed (d) to reason about limitations
of finite state transducers, to show that certain transductions are impossible. For instance, we have
shown that the stream 〈n3 + n2 + n〉 cannot be transformed into 〈n3〉. See ‘Transducer degrees’
for the definition of streams 〈· · ·〉.

To our best knowledge, our papers [53, 54] constitute the first application of techniques from
continuous mathematics to reason about the power and limitations of finite automata, and thereby
pioneers a fruitful bridge between these fields of mathematics and computer science.

Jeffrey Shallit, one of the world authorities in automata theory, highlighted two of our in-
triguing questions about Transducer degrees during his invited talk at the British Colloquium for
Theoretical Computer Science in 2014 (see [117] for the slides):

(1) Is the degree of the Thue-Morse sequence an atom?

(2) Are there atom degrees other than that of 100101102103 · · · ?

Our approach (described above) enabled us to answer question (2) by showing that there is an
infinite number of atoms. Question (1) remains open and is one of the questions we intend to
investigate in this project.

Our general methodology in this project is based on mathematical logic, formal languages and
combinatorics on finite and infinite words [19, 14, 15, 85, 69, 105]. We use techniques from the
vast culture of automata theory, the backbone of computer science [36, 112, 84, 104].

We frequently define streams equationally. Thus, more operationally, our background is that
of term rewriting systems, also infinitary. We have successfully used term rewriting to reason
about properties of streams in [41, 38, 47, 45, 46, 39, 142, 43, 49], including the solution of open
problems on streams in [48, 62]. In [48] we have solved a long-standing open problem (from
1993) on the subword complexity of words generated by periodically iterating morphisms.

Endrullis 6

Degrees of Transducibility

Our goal is to understand the power of finite state transducers, Mealy machines and pushdown
transducers (and Turing machines) for transforming streams. For each of these machine models
we obtain a hierarchy of stream degrees, as we explain below. For simplicity, we will speak of

(i) Transducer degrees,

(ii) Mealy degrees,

(iii) Pushdown degrees, and

(iv) Turing degrees, respectively.

LetM be one of the above machine models. The hierarchy of stream degrees arises as follows:

We obtain a transducibility relation ≥M on the set of streams as follows: for streams u andw we
define

u ≥M w ⇐⇒ u can be transformed into w by a machine fromM

This relation≥M is a pre-order, which induces equivalence classes of streams, called degrees, and
a partial order on these degrees. So a degree is an equivalence class with respect to the equivalence
relation ≥M ∩ ≤M.

For instance, the Thue–Morse sequence M and the period doubling sequence PD are equivalent
with respect to finite state transduction. Both streams belong to the same degree in the Transducer
degrees. We have already seen a FST transforming M into PD, and it is not difficult to find a FST
for the reverse transformation.

The transducibility relation can be interpreted as a complexity comparison for streams: if the
stream u can be transformed into w, then u is at least as complex as w, denoted u ≥M w. A
degree consists of streams that have the same complexity, meaning that they are transformable into
each other.

Goal We envisage to study the transducibility relation ≥M and the ensuing hierarchies
of stream degrees for the machine models mentioned above. Turing degrees have
been studied extensively, and will provide us with many guiding analogies.

On the one hand, we are interested in the structural properties of these hierarchies.
On the other hand, we are aiming at decision methods (or at least heuristic criteria)
for determining whether given streams can or cannot be transformed into each
other.

To give a better impression of the hierarchies we discuss a few basic properties: bottom degrees
and atoms.

0 bottom degree

other degrees
The bottom degree 0, illustrated on the right, is a degree that

is less or equal to all other degrees: for all degrees x we have
0 ≤ x. For the Turing degrees the bottom degree consists of
all computable streams. For the Transducer and Mealy degrees,
it consists of all ultimately periodic streams, streams of the form
uvvvv · · · for finite words u, v.

Endrullis 7

An interesting concept is that of an atom degree, that is, a degree that is directly above the
bottom degree with nothing in-between:

0 bottom degree

atom degree
nothing in-between

Thus the atom degrees reduce only to 0 or themselves:

(i) For the Transducer degrees, it was an open problem for a while whether there exists more
than one atom. In [44, 55], we have proven the existence of a countably infinite number of
atom degrees, but it remains an open problem whether there are continuum many.

(ii) In the Mealy degrees, there exist no atom degrees, see further [12].

(iii) In the Turing degrees, atoms are usually referred to as minimal degrees. A famous result
about Turing degrees, obtained by Spector [125], is the existence of an atom degree strictly
below the first Turing jump (the degree of the halting problem). Lacombe [119] has extended
the construction of Spector to show that there are continuum many atoms in the Turing
degrees.

C

computable degrees

un
co

m
pu

tab
le degrees

0
ultimately periodic words

atoms Q4

M X

sup?

〈n〉 〈n2〉 〈pk〉

〈nk〉
Q12

polynomials of
fixed order k ≥ 3

Q3

Q7

Q13

Q2

Q1

Figure 3 – The partial order of Transducer degrees. Some open problems are indicated in red. The blue
nodes are degrees. Note that 〈n〉 and 〈n2〉 are atoms, while 〈nk〉 is not an atom for k ≥ 3. Here pk is
a particular polynomial of order k. The degree of 〈pk〉 is an atom and all other polynomials of order k
can be transduced to 〈pk〉. The degree of C is the top degree of the computable streams (there are only
uncomputable degrees above C).

Due to the space limitations in this proposal, we will focus on Transducer degrees in the
remainder. Figure 3 sketches some open problems together with initial results about the hierarchy
of Transducer degrees that we have already obtained [50, 44, 55, 53, 54]. We use the following
notation: for f : N → N we define the stream

〈f〉 =
∞∏
i=0

0f(i)1 = 0f(0) 10f(1) 10f(2) · · · .

Endrullis 8

In the sequel we often write 〈f(n)〉 to denote the sequence 〈n 7→ f(n)〉. For instance:

〈n〉 = 1 10 100 1000 10000 100000 · · · 〈n2〉 = 1 10 10000 1000000000 · · ·

An initial study of this partial order of degrees has been carried out in [50]. The bottom degree
0 of the hierarchy is formed by the ultimately periodic streams. The hierarchy is not dense, not
well-founded (there exist infinite decreasing chains), there exist no maximal degrees, and a set of
degrees has an upper bound if and only if the set is countable. Beyond these initial observations,
the structure of the Transducer degrees is largely unexplored territory. There is a plethora of
interesting open questions:

Q2 Is the degree of Thue-Morse an atom?

Q3 Does there exist a non-computable atom in the Transducer degrees?

Q4 Are there continuum many atoms in the Transducer degrees?

Q5 Are the degrees of Thue-Morse M and Mephisto Waltz W incomparable? Here W is the
morphic stream obtained as the limit of iterating the morphism 0 7→ 001, 1 7→ 110 on the
starting word 0.

Q6 Does every degree have a minimal cover, that is, a degree directly above with nothing in-
between?

Q7 When does a pair of degrees have a least upper (greatest lower) bound?

Q8 Are there infinite ascending (descending) sequences having a least upper (greatest lower)
bound?

Q9 Are there interesting dense substructures? Are there dense intervals? That is degrees a and
e with a < e such that for all b,d with a ≤ b < d ≤ e there exists c with b < c < d.

Q10 Can every finite partial order be embedded in the hierarchy?

Can every finite distributive lattice be embedded in the hierarchy?

Q11 How complex is the first-order theory in the language 〈≥,=〉?

Answering these questions will require the development of novel techniques to reason about
transducers. In [50, 44, 55] we have carried out the first steps in this direction and have obtained
some results on atoms in the Transducer degrees:

The degrees of 〈n〉 and 〈n2〉 are atoms. But the degree of 〈nk〉 is not an atom, for any k ≥ 3.

While the degree of 〈nk〉 is not an atom for k ≥ 3, we found the following. For every k ≥ 1, there
is a unique atom degree among the degrees of polynomials of order k (with non-negative integer
coefficients), namely the degree of 〈pk(n)〉 where

pk(n) =

k−1∑
i=0

ai(kn+ i)k

for some a0, . . . , ak−1 > 0. To avoid confusion between two meanings of degrees, namely degrees
of streams and degrees of polynomials, we speak of the order of a polynomial.

Endrullis 9

The degree of 〈pk〉 is an atom for every k ≥ 1. Moreover, for every polynomial q of order k we
have 〈q〉 ≥ 〈pk〉, that is, the stream 〈q〉 can be transduced to 〈pk〉.

These results indicate a rich structure among the degrees of polynomials that we intend to investi-
gate:

Q12 How many degrees exist among polynomials of order k?

Q13 What is the structure of the degrees of polynomials?

Dekking [31] has proven the following important theorem about finite state transduction:

The finite state transduct of a morphic stream is morphic (or finite).

As a consequence, the morphic streams form a subhierarchy of the Transducer degrees. As a matter
of fact, many of the sequences, that we are interested in, are morphic. Unfortunately, Dekking’s
proof gives no insights on the structure of the transducts (beyond being morphic). Such an insight
could be very useful for proving non-transducibility between morphic sequences and thereby to
answer questions such as Q1 , above. This leads to the following research questions:

Q14 Can Dekking’s result be strengthened to characterise the possible shapes of the resulting
morphisms?

Q15 Is transducibility (≥) decidable for morphic (or automatic) sequences?

For non-erasing (every transition has a non-empty output) finite state transducers, we have shown
in [126] that α-substitutivity can be used as a criterion for non-transducibility between morphic
sequences. However, this criterion does not generalise to general finite state transduction.

We mention a few more research questions that are interesting to investigate:

Q16 Is every degree a the greatest lower bound of a pair of degrees (6= a)?

0 0

Figure 4 – Are these structures possible in the Transducer degrees?

Q17 Is there a degree that has precisely two degrees below itself? This is displayed in Figure 4
on the right.

Q18 Is there a degree that has precisely three degrees below itself: two incomparable degrees
and the bottom degree? This is displayed in Figure 4 on the left.

Q19 Find suitable notions of Kolmogorov complexity that have relations to the Transducer de-
grees.

Q20 Establish the relations between the well-known families of streams (automatic sequences,
morphic sequences, sturmian sequences, paperfolding sequences, Toeplitz sequences, . . .)
and the hierarchy of stream degrees.

Endrullis 10

Motivation

Motivation: degrees of unsolvability

The Transducer degrees are analogous to – but much more fine-grained than – the recursion-
theoretic degrees of unsolvability or Turing degrees. Turing degrees have been the subject of exten-
sive research in the last century with many fascinating results and techniques (Shoenfield [119]).
In contrast, very little is known about the power of the finite automata models when it comes to
transforming streams.

In the Turing degrees, sets of natural numbers are compared by means of transducibility using
Turing machines. The ensuing hierarchy of degrees of unsolvability has been widely studied in the
60’s and 70’s of the last century and later. These degrees can be seen as a measure of complexity
of a set of natural numbers. Note that a set of natural numbers (as the subject of degrees of
unsolvability) is also a stream over the alphabet {0, 1} via its characteristic function. Thus the
degrees of unsolvability can equivalently be considered as a hierarchy of stream degrees. Then we
have Turing machines transforming streams into each other.

For a complexity comparison, Turing machines are too strong. We are typically interested
in computable streams, but they are all identified by transducibility via Turing machines. In the
hierarchy of Turing degrees, all computable streams are trivialised in the bottom degree. We are
therefore interested in studying transducibility of streams with respect to less powerful devices,
such as the concepts of finite automata mentioned above. A reduction of the computational power
results in a finer structure of degrees. A finer structure of degrees gives rise to a novel way to
compare/measure the complexity of streams.

Motivation: constant-space algorithms

Analysing and processing the enormous amount of data generated by various real-world applica-
tions (for instance Internet of Things) is one of the major challenges of computer science today.
This concerns streams of sensor data from continual measurements, streams of financial transac-
tions (stock markets), streams of messages in social media (Twitter or Facebook), and so forth.
When it comes to data sets that are massive in size, even linear algorithms may be too complex
for processing the data. For instance, think of an algorithm with linear space complexity ap-
plied to petabytes of input data. This has led to the rapidly developing research field of sublinear
algorithms that is concerned with the development of algorithms having sublinear-space and/or
sublinear-time complexity.

The most strict form of sublinear-space complexity is constant-space. It is important to note
that a constant-space algorithm is nothing else than a finite state transducer transforming some
input stream into an output stream while using a fixed amount of memory. A constant space-
complexity is indispensable for programs that are intended to run indefinitely, to continually trans-
form an endless input stream into an endless output stream. Any algorithm not having constant
space-complexity will eventually run out of memory when transforming an infinite stream. This
motivates the study of constant-space algorithms for the transformation of streams.

Endrullis 11

Background on Streams

Streams are infinite sequences of symbols, also called infinite words, or ω-words. A landmark
was the discovery in 1906 by Axel Thue, founding father of formal language theory, of the famous
Thue–Morse sequence

M = 0110 1001 1001 0110 1001 0110 0110 1001 . . .

Thue was interested in avoiding patterns, like squares ww or cubes www. Indeed, the Thue–
Morse sequence is cube-free. Interpreting the stream as drawing instructions, this stream gives
rise to (via scaling back the approximations and convergence in the Hausdorff metric) a well-
known fractal curve, the Koch snowflake. This famous stream, rediscovered in the theory of
dynamical systems by mathematician Marston Morse in 1942, is a member of two important
families of streams: automatic sequences (defined before) and morphic sequences. The Thue–
Morse sequence is a (purely) morphic sequence that arises starting from the word 0, iterating the
morphism 0 7→ 01, 1 7→ 10, obtaining 0 7→ 01 7→ 0110 7→ 01101001 7→ 0110100110010110 7→
· · · .

Research team and workplan

The core research team will consist of 2 PhD students, 1 postdoc and the principal investigator
(PI). One of the project goals is to stimulate the collaboration of different branches of computer
science and mathematics. To this end, we embed the project in the following extended research
team:

Team member University Expertise
Dr. Helle Hvid Hansen TU Delft coalgebra and coinductive reasoning
Dr. Robbert Fokkink TU Delft topology, automata theory and combinatorics
Dr. Femke van Raamsdonk VU Amsterdam logic and higher-order term rewriting

To facilitate a close collaboration, the second PhD student will work for 2 days per week at the TU
Delft with Helle Hansen and Robbert Fokkink; the principal investigator will join for one of the
two days. Beyond this national collaboration, we have reserved travel budget for research visits
abroad and to invite international researchers to the Vrije Universiteit Amsterdam. In particular,
the postdoc is intended to visit the group of Jeffrey Shallit at the University of Waterloo for 2 or 3
months.

The following diagram presents a rough classification of the questions (for finite state transduc-
ers) with respect to difficulty (short-term, mid-term, long-term) and with respect to methodology:

Endrullis 12

mathematical logic,
recursion theory

automata theory, and
combinatorics on words

our methods
developed in [53, 54]

Q20

Q16

Q17 Q18

Q12

Q13

Q8

Q9

Q19

Q10

Q11 Q3 Q7

Q6

Q4

Q5 Q15

Q14

Q1 Q2

WP1

WP2

WP3

short-term

mid-term

long-term

The diagrams also depicts the main work packages WP1 , WP2 and WP3 .

– WP1 concerns global structural properties of the hierarchy of stream degrees. For these
questions we expect that (extensions of) our techniques from [53, 54] are applicable.

– WP2 is about local structural properties, that is, what degrees have certain properties (e.g.
a minimal cover, or being the greatest lower bound of two other degrees). We intend to
tackle these questions using general methodology of mathematical logic, recursion theory
and combinatorics on words.

– WP3 concerns the development of criteria (e.g. invariants) for transducibility and non-
transducibility (with a particular focus on morphic and automatic streams).

Each work package can profit from insights obtained in the other packages, but they are sufficiently
independent to prevent stagnation. Each of the work packages comes in 3 flavours, for instance,
the work package WP1 consists of T1 for finite state transducers, M1 for Mealy machines, and
P1 for Pushdown transducers.

We envisage the following work plan for the PhD students:

6 12 18 24 30 36 42 48 54 60
dissemination of results

M1 T1 WP3

M2 T2 P1 P2

PhD 1

PhD 2

Month

The principal investigator and the postdoc (from year 2 to 3) will be active in all tasks and all
activities.

Endrullis 13

Knowledge utilisation

(×) Yes, this proposal has the potential of knowledge utilization.

() No, this proposal has no direct knowledge utilization.

This project is fundamental, curiosity driven research . We do not claim direct impact on indus-
trial applications or society. This being said, we wish to point out the following. Most of the
groundbreaking results in automata theory have been found by purely curiosity driven research.
Kleene invented regular expressions in 1951, and Chomsky established the Chomsky-hierarchy
in 1956, long before regular and context-free languages became indispensable tools in numerous
industrial applications (for instance, parsing and text processing). Büchi has studied Büchi au-
tomata in 1962, decades before they paved the way to model checking for software and hardware
verification.

The goal of this project is to develop fundamental theory about finite automata for transforming
streams. The applications of this research reside mainly inside the research community . The
interest of the research community is witnessed by three invited talks on the subject of this proposal
given by the principal investigator:

– at the conference Automatic Sequences, Number Theory, Aperiodic Order 2015 in Delft,

– at the conference WORDS 2015 in Kiel,

– at the Fields Workshop - Challenges in Combinatorics on Words 2013 in Toronto.

The importance of the subject has also been recognised by some of the leading researchers in the
field of automata theory. As mentioned before, Jeffrey Shallit highlighted some open problems
on finite state transducers in his invited talk at the British Colloquium for Theoretical Computer
Science 2014.

Building bridges between different areas in computer science and mathematics is an impor-
tant goal of this project. We have pioneered the use of techniques from continuous mathematics
for reasoning about the capabilities and limitations of finite state transducers (see Section ‘Central
objective and methodology’). We also strive to establish results in the reverse direction, enabling
the use of theory about finite state transducers to derive results in continuous mathematics. Simi-
lar connections have been fruitfully exploited in the past: finite automata, giving rise to automatic
sequences, have been shown to have deep connections to number theory.

Shallit, Goc and Henshall [60, 61] develop impressive tools for automated reasoning about
streams properties (for automatic sequences and paperfolding sequences). Among other results,
they obtain automatic proofs of challenging open problems, and derive optimal avoidance bounds
that improve on the best known bounds in the literature. Similarly, the current research proposal
has the potential to contribute to automated reasoning about stream transduction.

In a recent paper [77], Kozen and Soloviev employ a (coalgebraic model) of finite state trans-
ducers as stream transformers for constructing and reasoning about efficient reductions between
random processes. Their framework allows for analysing the trade-off between latency and en-
tropy in a compositional way. They envisage a research program casting Shannon’s information theory
in terms of stream transducers. This is an intriguing application of stream transducers, highlight-
ing the importance of understanding these devices. We think that our project will contribute in this
direction, and we strive to collaborate with Kozen and Soloviev.

Endrullis 14

Beyond the research community, teaching automata theory to students can of course profit
from illustrative, elegant and deep results about automata as the ones we strive for.

If this project succeeds in gaining new fundamental insights in finite automata, then these
results may very well have industrial impact in the long term . In modern computing and infor-
mation processing applications, the datatype of infinite streams of symbols is of paramount impor-
tance since information is often conveyed interactively, in a continual way without termination, by
communication with environment stimuli. Applications are ubiquitous in embedded systems, sig-
nal processing, financial data streams, and nowadays even in social media analysis where patterns
in data streams have to be identified and recognized leading for instance to directed advertising.
Indirect applications may even be found in chemistry, where the analysis of quasicrystals turned
out to rest ultimately on the understanding of infinite sequences such as sturmian sequences [13].

References

[1] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri. Openfst: A general and ef-
ficient weighted finite-state transducer library. In 12th International Conference on Imple-
mentation and Application of Automata (CIAA), volume 4783 of Lecture Notes in Computer
Science, pages 11–23. Springer, 2007.

[2] J.-P. Allouche. Sur la Complexité des Suites Infinies. Journées Montoises, 1(2):133–143,
1994.

[3] J.-P. Allouche and R. Bacher. Toeplitz Sequences, Paperfolding, Towers of Hanoi, and
Progression-Free Sequences of Integers. L’Enseignement Mathématique, 38:315–327,
1992.

[4] J.-P. Allouche and J. Shallit. The Ubiquitous Prouhet–Thue–Morse Sequence. In Sequences
and Their Applications: Proceedings of SETA ’98, pages 1–16. Springer, 1999.

[5] J.-P. Allouche and J. Shallit. Automatic Sequences: Theory, Applications, Generalizations.
Cambridge University Press, New York, 2003.

[6] J.-P. Allouche and G. Skordev. Von Koch and Thue–Morse Revisited, 2006.

[7] R. Alur and P. Černý. Streaming transducers for algorithmic verification of single-pass
list-processing programs. SIGPLAN Not., 46(1):599–610, January 2011.

[8] R. Alur and P. Černý. Streaming transducers for algorithmic verification of single-pass
list-processing programs. In Proceedings of the 38th annual ACM SIGPLAN-SIGACT sym-
posium on Principles of programming languages, POPL ’11, pages 599–610, New York,
NY, USA, 2011. ACM.

[9] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

[10] H. P. Barendregt. The type free lambda calculus. In Jon Barwise, editor, Handbook of
mathematical Logic, pages 1091–1132. Nort-Holland Publishing Company, Amsterdam,
1977.

[11] H. P. Barendregt and J. W. Klop. Applications of Infinitary Lambda Calculus. Information
of Computation, 207(5):559–582, 2009.

Endrullis 15

[12] A. Belov. Some Algebraic Properties of Machine Poset of Infinite Words. ITA, 42(3):451–
466, 2008.

[13] J. Berstel. Recent results on Sturmian words. In Proc. Conf. on Developments in Language
Theory (DLT 1996), pages 13–24. World Scientific, 1996.

[14] J. Berstel and J. Karhumäki. Combinatorics on Words - A Tutorial. Bull. of the EATCS,
79:178–228, 2003.

[15] V. Berthé. Sequences Of Low Complexity: Automatic And Sturmian Sequences. Course
notes.

[16] A. Carpi. Repetitions in the Kolakovski Sequence. Bull. of the EATCS, 50:194–196, 1993.

[17] J. Cassaigne and J. Karhumäki. Toeplitz words, Generalized Periodicity and Periodically
Iterated Morphisms. European Journal of Combinatorics, 18(5):497–510, 1997.

[18] S. Cautis, F. Mignosi, J. Shallit, M. Wang, and S. Yazdani. Periodicity, morphisms, and
matrices. Theoretical Computer Science, 295:107–121, 2003.

[19] C. Choffrut and J. Karhumäki. Combinatorics of Words. In A. Salomaa and G. Rozenberg,
editors, Handbook of Formal Languages, volume 1, pages 329–438. Springer, 1997.

[20] V. Chvátal. Notes on the Kolakoski Sequence. Technical Report 93-84, DIMACS, 1994.

[21] A. Cobham. On the Base-Dependence of Sets of Numbers Recognizable by Finite Au-
tomata. Mathematical Systems Theory, 3(2):186–192, 1969.

[22] A. Cobham. Uniform tag sequences. Theory of Computing Systems, 6:164–192, 1972.

[23] J. H. Conway. Unpredictable Iterations. In Proceedings of the 1972 Number Theory Con-
ference, pages 49–52, 1972.

[24] J. H. Conway. Fractran: A Simple Universal Programming Language for Arithmetic. In
T. M. Cover and B. Gopinath, editors, Open Problems in Communication and Computation,
pages 4–26. Springer, 1987.

[25] K. Culik II and T. Harju. The omega-Sequence Problem for DOL Systems Is Decidable. J.
ACM, 31(2):282–298, 1984.

[26] K. Culik II and J. Karhumäki. Iterative Devices Generating Infinite Words. In Proc. 9th
Ann. Symp. on Theoretical Aspects of Computer Science (STACS 1992), volume 577 of
Lecture Notes in Computer Science, pages 531–543. Springer, 1992.

[27] K. Culik II, J. Karhumäki, and A. Lepistö. Alternating Iteration of Morphisms and Ko-
lakovski [sic] Sequence. In G. Rozenberg and A. Salomaa, editors, Lindermayer Systems,
Impacts on Theoretical Computer Science, Computer Graphics and Developmental Biol-
ogy, pages 93–106. Springer, 1992.

[28] K. Culik II and J. Kari. Digital images and formal languages. In Grzegorz Rozenberg and
Arto Salomaa, editors, Handbook of formal languages, vol. 3, pages 599–616. Springer,
1997.

Endrullis 16

[29] F. M. Dekking. Constructies voor 0-1-Rijen met Strikt Ergodische Afgesloten Baan. Mas-
ter’s thesis, Universiteit van Amsterdam, 1974.

[30] F. M. Dekking. On the Distribution of Digits in Arithmetic Sequences. In Séminaire de
Théorie des Nombres de Bordeaux, volume 12, pages 3201–3212, 1983.

[31] F. M. Dekking. Iteration of Maps by an Automaton. Discrete Mathematics, 126(1-3):81–86,
1994.

[32] F. M. Dekking. What Is the Long Range Order in the Kolakoski Sequence? In R. V. Moody
and J. Patera, editors, The Mathematics of Long-Range Aperiodic Order (Waterloo, ON,
1995), volume 489 of NATO ASI Series, Series C: Mathematical and Physical Sciences,
pages 115–125, Dordrecht, The Netherlands, 1997. Kluwer Academic Publishers.

[33] G. Edgar. Measure, Topology, and Fractal Geometry. Springer, 2nd edition, 2008.

[34] A. Ehrenfeucht, K. P. Lee, and G. Rozenberg. Subword Complexities of Various Classes
of Deterministic Developmental Languages Without Interaction. Theoretical Computer
Science, 1:59–75, 1975.

[35] A. Ehrenfeucht and G. Rozenberg. Subword Complexity of Square-Free D0L Languages.
Theoret. Comp. Sci., 16(1):25–32, 1981.

[36] S. Eilenberg. Automata, Languages and Machines (Vol. A). Academic Press, 1974.

[37] J. Endrullis. Jambox: Automated Termination Proofs For String and Term Rewriting. The
tool is available via http://joerg.endrullis.de/.

[38] J. Endrullis, C. Grabmayer, and D. Hendriks. Data-Oblivious Stream Productivity. In Proc.
Conf. Logic for Programming, Artificial Intelligence, and Reasoning (LPAR 2008), pages
79–96, 2008.

[39] J. Endrullis, C. Grabmayer, and D. Hendriks. Complexity of Fractran and Productivity. In
Proc. Conf. on Automated Deduction (CADE 2009), pages 371–387, 2009.

[40] J. Endrullis, C. Grabmayer, D. Hendriks, A. Isihara, and J. W. Klop. Productivity of Stream
Definitions. In Fundamentals of Computation Theory, 16th International Symposium, FCT
2007, Budapest, Hungary, August 27-30, 2007, Proceedings, number 4639 in LNCS, pages
274–287. Springer, 2007.

[41] J. Endrullis, C. Grabmayer, D. Hendriks, A. Isihara, and J. W. Klop. Productivity of Stream
Definitions. Theoretical Computer Science, 411:765–782, 2010.

[42] J. Endrullis, C. Grabmayer, D. Hendriks, and J. W. Klop. Infinite Streams. In Nieuwsbrief
van de NVTI (Newsletter of the Dutch Association for Theoretical Computer Science), pages
39–48. 2009. http://www.nvti.nl/Newsletter/Nieuwsbrief2009.pdf.

[43] J. Endrullis, C. Grabmayer, D. Hendriks, J. W. Klop, and R. C. de Vrijer. Proving Infinitary
Normalization. In S. Berardi, F. Damiani, and U. de’Liguoro, editors, TYPES 2008, volume
5497 of Lecture Notes in Computer Science, pages 64–82. Springer, 2009.

[44] J. Endrullis, C. Grabmayer, D. Hendriks, and H. Zantema. The Degree of Squares is an
Atom. In Proc. Conf. on Combinatorics on Words (WORDS 2015), volume 9304 of LNCS,
pages 1–13. Springer, 2015.

http://www.nvti.nl/Newsletter/Nieuwsbrief2009.pdf

Endrullis 17

[45] J. Endrullis and D. Hendriks. From Outermost to Context-Sensitive Rewriting. In Proc.
Conf. on Rewriting Techniques and Applications (RTA 2009), volume 5595 of LNCS, pages
305–319. Springer, 2009.

[46] J. Endrullis and D. Hendriks. Transforming Outermost into Context-Sensitive Rewriting.
Logical Methods in Computer Science, 6(2), 2010.

[47] J. Endrullis and D. Hendriks. Lazy Productivity via Termination. Theoretical Computer
Science, 412(28):3203–3225, 2011.

[48] J. Endrullis and D. Hendriks. On Periodically Iterated Morphisms. In Proc. Joint Meeting
of Conference on Computer Science Logic and Symposium on Logic in Computer Science
(CSL-LICS 2014), pages 39:1–39:10. ACM, 2014.

[49] J. Endrullis, D. Hendriks, and M. Bodin. Circular Coinduction in Coq Using Bisimulation-
Up-To Techniques. In Proc. Conf. on Interactive Theorem Proving (ITP), volume 7998 of
LNCS, pages 354–369. Springer, 2013.

[50] J. Endrullis, D. Hendriks, and J. W. Klop. Degrees of Streams. Journal of Integers,
11B(A6):1–40, 2011. Proceedings of the Leiden Numeration Conference 2010.

[51] J. Endrullis, D. Hendriks, and J. W. Klop. Highlights in Infinitary Rewriting and Lambda
Calculus. Theoretical Computer Science, 464:48–71, 2012.

[52] J. Endrullis, D. Hendriks, and J. W. Klop. Streams are Forever. Bulletin of the EATCS,
109:70–106, 2013.

[53] J. Endrullis, J. Karhumäki, J. W. Klop, and A. Saarela. Degrees of Infinite Words, Poly-
nomials and Atoms. In Proc. Conf. on Developments in Language Theory (DLT 2016),
volume 9840 of LNCS, pages 164–176. Springer, 2016.

[54] J. Endrullis, J. Karhumäki, J. W. Klop, and A. Saarela. Degrees of infinite words, polyno-
mials and atoms. International Journal of Foundations of Computer Science, 29(5), 2018.

[55] J. Endrullis, J. W. Klop, A. Saarela, and M. Whiteland. Degrees of Transducibility. In Proc.
Conf. on Combinatorics on Words (WORDS 2015), volume 9304 of LNCS, pages 109–121.
Springer, 2015.

[56] S. Ferenczi. Tiling the Morse Sequence. Theor. Comput. Sci., 94(2):215–221, 1992.

[57] S. Ferenczi. Complexity of Sequences and Dynamical Systems. Discrete Mathematics,
206(1-3):145–154, 1999.

[58] A. E. Frid. Sequences of Linear Arithmetical Complexity. Theoretical Computer Science,
339(1):68–87, 2005.

[59] J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic Termination Proofs
in the Dependency Pair Framework. In Proc. Conf. on Automated Reasoning (IJCAR ’06),
volume 4130 of LNCS, pages 281–286. Springer, 2006.

[60] D. Goč, D. Henshall, and J. Shallit. Automatic theorem-proving in combinatorics on words.
In Nelma Moreira and Rogério Reis, editors, Implementation and Application of Automata,
pages 180–191, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

Endrullis 18

[61] D. Goč, D. Henshall, and J. Shallit. Automatic theorem-proving in combinatorics on words.
International Journal of Foundations of Computer Science, 24(6), 2013.

[62] C. Grabmayer, J. Endrullis, D. Hendriks, J. W. Klop, and L. S. Moss. Automatic Sequences
and Zip-Specifications. In Proc. Symp. on Logic in Computer Science (LICS 2012), pages
335–344. IEEE Computer Society, 2012.

[63] N. Hirokawa and A. Middeldorp. Tyrolean Termination Tool. In Proc. Conf. on Rewriting
Techniques and Applications (RTA ’05), volume 3467 of LNCS, pages 175–184. Springer,
2005.

[64] R. A. Holmgren. A First Course in Discrete Dynamical Systems. Springer Universitext,
2nd edition, 1996.

[65] J. Hromkovič, J. Karhumäki, and A. Lepistö. Comparing Descriptional and Computational
Complexity of Infinite Words. In J. Karhumäki, H. Maurer, and G. Rozenberg, editors,
Results and Trends in Theoretical Computer Science, volume 812 of LNCS, pages 169–
182. Springer, 1994.

[66] J. E. Hutchinson. Fractals and Self-Similarity. Indiana Univ. Math. J., 30:713–747, 1981.

[67] K. Jacobs. Invitation to mathematics. Princeton University Press, 1992.

[68] K. Jacobs and M. Keane. 0-1-Sequences of Toeplitz Type. Zeitschrift für Wahrschein-
lichkeitstheorie und Verwandte Gebiete, 13(2):123–131, 1969.

[69] J. Karhumäki and A. Lepistö. Combinatorics on Infinite Words. Technical Report 578,
Turku Centre for Computer Science, 2003.

[70] M. Keane. Generalized Morse Sequences. Zeitschrift für Wahrscheinlichkeitstheorie und
Verwandte Gebiete, 10(4):335–353, 1968.

[71] S. C. Kleene and E. L. Post. The upper semi-lattice of degrees of recursive unsolvability.
Annals of Mathematics, 59(3):379–407, 1954.

[72] J. W. Klop. Term Rewriting Systems. In Handbook of Logic in Computer Science, vol-
ume II, pages 1–116. Oxford University Press, 1992.

[73] J. W. Klop and R. C. de Vrijer. Infinitary Normalization. In S. Artemov, H. Barringer, A. S.
d’Avila Garcez, L. C. Lamb, and J. Woods, editors, We Will Show Them: Essays in Honour
of Dov Gabbay, volume 2, pages 169–192. College Publications, 2005.

[74] H. von Koch. Une Méthode Géométrique Élementaire pour l’Étude de Certaines Questions
de la Theorie des Courbes Planes. In Acta Math., volume 30, pages 145–174, 1906.

[75] W. Kolakovski. Self Generating Runs. Amer. Math. Monthly, 72, 1965. Problem 5304.

[76] A. Koprowski. TPA: Termination Proved Automatically. In Proc. Conf. on Rewriting Tech-
niques and Applications (RTA ’06), volume 4098 of LNCS, pages 257–266. Springer, 2006.

[77] D. Kozen and M. Soloviev. Coalgebraic tools for randomness-conserving protocols. In
Coalgebra, Now FLoC 2018, 2018.

Endrullis 19

[78] C. Kupke and J. J. M. M. Rutten. Complete Sets of Cooperations. Information and Com-
putation, 208(12):1398–1420, 2010.

[79] C. Kupke and J. J. M. M. Rutten. On the Final Coalgebra of Automatic Sequences. CWI
Technical Report SEN-1112, CWI, 2011.

[80] C. Kupke and J. J. M. M. Rutten. On the Final Coalgebra of Automatic Sequences. In Logic
and Program Semantics - Essays Dedicated to Dexter Kozen on the Occasion of his 60th
Birthday, volume 7230 of Lecture Notes in Computer Science, pages 149–164. Springer,
2012.

[81] C. Kupke, J. J. M. M. Rutten, and M. Niqui. Stream Differential Equations: Concrete
Formats for Coinductive Definitions. Technical Report RR-11-10, Oxford University, 2011.

[82] A. Lepistö. On the Power of Periodic Iteration of Morphisms. In Proc. Colloquium on
Automata, Languages and Programming (ICALP), volume 700, pages 496–506. Springer,
1993.

[83] M. Li and P. M. B. Vitányi. An Introduction to Kolmogorov Complexity and Its Applications.
Springer, 2nd edition, 2008.

[84] M. Lothaire. Combinatorics on Words. Cambridge University Press, 2nd edition, 1997.

[85] M. Lothaire. Algebraic Combinatorics on Words. Cambridge University Press, 2002.

[86] B. Löwe. Complexity Hierarchies Derived from Reduction Functions. In Classical and
New Paradigms of Computation and their Complexity Hierarchies, volume 23 of Trends in
Logic, pages 1–14. Springer, 2004.

[87] S. Lucas. mu-term: A Tool for Proving Termination of Context-Sensitive Rewriting. In
Proc. Conf. on Rewriting Techniques and Applications (RTA ’04), volume 3091 of LNCS,
pages 200–209. Springer, 2004.

[88] J. Ma and J. A. Holdener. When Thue–Morse meets Koch. In Fractals: Complex Geometry,
Patterns, and Scaling in Nature and Society, volume 13, pages 191–206, 2005.

[89] A. Middeldorp, V. van Oostrom, F. van Raamsdonk, and R. C. de Vrijer, editors. Processes,
Terms and Cycles: Steps on the Road to Infinity, Essays Dedicated to Jan Willem Klop,
on the Occasion of his 60th Birthday, volume 3838 of Lecture Notes in Computer Science.
Springer, 2005.

[90] F. Mignosi, A. Restivo, and S. Salemi. Periodicity and the Golden Ratio. Theor. Comput.
Sci., 204(1–2):153–167, 1998.

[91] R. Milner. The Spectra of Words. In [89], pages 1–5, 2005.

[92] M. Mohri. Finite-state transducers in language and speech processing. Computational
Linguistics, 23(2):269–311, 1997.

[93] M. Mohri, F. Pereira, and M. Riley. Weighted Automata in Text and Speech Processing.
CoRR, abs/cs/0503077, 2005.

[94] M. Morse. Recurrent Geodesics on a Surface of Negative Curvature. In Trans. Amer. Math.
Soc., volume 22, pages 84–100, 1921.

Endrullis 20

[95] M. Morse and G. A. Hedlund. Symbolic Dynamics. American Journal of Mathematics,
60:815–866, 1938.

[96] M. Morse and G. A. Hedlund. Symbolic dynamics II: Sturmian trajectories. Amer. J. Math.,
62:1–42, 1940.

[97] A. A. Muchnik, Y. L. Pritykin, and A. L. Semenov. Sequences Close to Periodic. Russian
Mathematical Surveys, 64(5):805–871, 2009.

[98] T. Nagell, editor. Selected mathematical papers of Axel Thue. Universitetsforlaget, Oslo,
1977.

[99] P. Odifreddi. Classical recursion theory. Studies in logic and the foundations of mathemat-
ics. North-Holland, Amsterdam, 1999.

[100] G. Paun. How much Thue is Kolakovski? Bull. of the EATCS, 49:183–185, 1993.

[101] H. Peitgen, H. Jürgens, and D. Saupe. Chaos and Fractals. New Frontiers of Science.
Springer, 2nd edition, 2004.

[102] F. Pereira, M. Riley, and R. Sproat. Weighted rational transductions and their application
to human language processing. In Proceedings of the workshop on Human Language Tech-
nology, HLT ’94, pages 262–267. Association for Computational Linguistics, 1994.

[103] S. Peyton Jones. Haskell 98 Language and Libraries, The Revised Report. Cambridge
University Press, 2003.

[104] J.-É. Pin. Profinite Methods in Automata Theory. In Proc. of the 26th Symposium on The-
oretical Aspects of Computer Science (STACS 2009), pages 31–50. IBFI Schloss Dagstuhl,
2009.

[105] J.-É. Pin and P. V. Silva. A topological approach to transductions. Theoretical Computer
Science, 340(2):443–456, 2005.

[106] R. Plasmeijer and M. Eekelen. The Concurrent Clean Language Report (version 2.0). Tech-
nical report, University of Nijmegen, 2001.

[107] N. Pytheas Fogg. Substitutions in Dynamics, Arithmetics and Combinatorics, volume 1794
of Lecture Notes in Mathematics. Springer, 2002.

[108] G. Rayna. Degrees of finite-state transformability. Information and Control, 24(2):144–
154, 1974.

[109] E. Roche. Text disambiguation by finite state automata, an algorithm and experiments on
corpora. In COLING, pages 993–997, 1992.

[110] E. Roche. Compact factorization of finite-state transducers and finite-state automata. Nord.
J. Comput., 4(2):187–216, 1997.

[111] G. Roşu. Equality of Streams is a Π02-complete Problem. In ICFP, pages 184–191, 2006.

[112] J. Sakarovitch. Elements Of Automata Theory. Cambridge, 2003.

Endrullis 21

[113] A. Salomaa. Jewels of Formal Language Theory. Computer Science Press, Rockville,
Maryland, 1981.

[114] Helmut Schmid. A programming language for finite state transducers. In Finite-State
Methods and Natural Language Processing, volume 4002 of Lecture Notes in Computer
Science, pages 308–309. Springer Berlin / Heidelberg, 2006.

[115] M. Schroeder. Fractals, Chaos, Power Laws, Minutes from an Infinite Paradise. W. H.
Freeman and Company, 1991.

[116] J. I. Seiferas and R. McNaughton. Regularity-preserving relations. Theoretical Computer
Science, 2(2):147–154, 1976.

[117] J. Shallit. Open problems in automata theory: an idiosyncratic view. https://cs.
uwaterloo.ca/~shallit/Talks/bc4.pdf, 2014. LMS Keynote Talk in Discrete
Mathematics, BCTCS.

[118] J. Shallit and J. Stolfi. Two methods for generating fractals. Computer & Graphics,
13(2):185–191, 1989.

[119] J. R. Shoenfield. Degrees of Unsolvability. North-Holland, Elsevier, 1971.

[120] R. A. Shore. Conjectures and questions from Gerald Sacks’s Degrees of Unsolvability.
Archive for Mathematical Logic, 36(4-5):233–253, 1997.

[121] D. Siefkes. Undecidable extensions of monadic second order successor arithmetic. Mathe-
matical Logic Quarterly, 17(1):385–394, 1971.

[122] N. J. A. Sloane. Online Encyclopedia of Integer Sequences. http://oeis.org/.

[123] N. J. A. Sloane. Online Encyclopedia of Integer Sequences, 2009. http://www.

research.att.com/~njas/sequences/.

[124] R. I. Soare. Recursively enumerable sets and degrees. Bulletin of the American Mathemat-
ical Society, 84(6):1149–1181, 1978.

[125] C. Spector. On degrees of recursive unsolvability. Annals of mathematics, pages 581–592,
1956.

[126] D. Sprunger, W. Tune, J. Endrullis, and L. S. Moss. Eigenvalues and Transduction of
Morphic Sequences. In Proc. Conf. Developments in Language Theory (DLT 2014), volume
8633 of Lecture Notes in Computer Science, pages 239–251. Springer, 2014.

[127] R. Steacy. Structure in the Kolakoski Sequence. Bull. of the EATCS, 59:173–181, 1996.

[128] S. Stern. The Thue–Morse Sequence. Master’s thesis, Vrije Universiteit Amsterdam, 2008.

[129] A. Telford and D. Turner. Ensuring Streams Flow. In AMAST, pages 509–523, 1997.

[130] A. Telford and D. Turner. Ensuring the Productivity of Infinite Structures. Technical Report
14-97, The Computing Laboratory, Univ. of Kent at Canterbury, 1997.

[131] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press, 2003. Author’s acronym includes J. W. Klop,
F. van Raamsdonk and R. C. de Vrijer.

https://cs.uwaterloo.ca/~shallit/Talks/bc4.pdf
https://cs.uwaterloo.ca/~shallit/Talks/bc4.pdf
http://oeis.org/
http://www.research.att.com/~njas/sequences/
http://www.research.att.com/~njas/sequences/

Endrullis 22

[132] Termination Competition. http://www.termination-portal.org/.

[133] W. Thomas. Automata on Infinite Objects. In Handbook of Theoretical Computer Science,
Volume B: Formal Models and Semantics, pages 133–192. MIT Press, 1990.

[134] A. Thue. Über unendliche Zeichenreihen. In Norske vid. Selsk. Skr. Mat. Nat. Kl., volume 7,
pages 1–22, 1906. Reprinted in [98, 139–158].

[135] A. Thue. Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. In Norske vid.
Selsk. Skr. Mat. Nat. Kl., volume 1, pages 1–67, 1912. Reprinted in [98, 413–478].

[136] D. Turner. An overview of miranda. SIGPLAN Not., 21(12):158–166, 1986.

[137] M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and N. Bjorner. Symbolic finite
state transducers: algorithms and applications. In Proceedings of the 39th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, POPL ’12, pages
137–150. ACM, 2012.

[138] M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and N. Bjorner. Symbolic finite state
transducers: algorithms and applications. SIGPLAN Not., 47(1):137–150, January 2012.

[139] J. Waldmann. Matchbox: A Tool for Match-Bounded String Rewriting. In Proc. Conf. on
Rewriting Techniques and Applications (RTA ’04), volume 3091 of LNCS, pages 85–94.
Springer, 2004.

[140] H. Zantema. Termination of String Rewriting Proved Automatically. J. Autom. Reason.,
34(2):105–139, 2005.

[141] H. Zantema. Well-Definedness of Streams by Termination. In Proc. Conf. on Rewriting
Techniques and Applications (RTA ’09), pages 164–178. Springer, 2009.

[142] H. Zantema and J. Endrullis. Proving Equality of Streams Automatically. In RTA, pages
393–408, 2011.

[143] H. Zantema and M. Raffelsieper. Stream Productivity by Outermost Termination. In Proc.
Workshop on Reduction Strategies in Rewriting and Programming (WRS 2009), volume 15
of Electronic Proceedings in Theoreatical Computer Science, pages 83–95, 2009.

[144] H. Zantema and M. Raffelsieper. Proving Productivity in Infinite Data Structures. In Proc.
21st Int. Conf. on Rewriting Techniques and Applications (RTA 2010), volume 6, pages
401–416. Schloss Dagstuhl, 2010.

