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Infinitary Rewriting

Example (The Stream of Natural Numbers)
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Infinite Terms
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Definition
An infinite term is a partial map t : N∗ ⇀ Σ from positions to symbols such that:

• t(ε) ∈ Σ, and

• t(ip) ∈ Σ⇐⇒ 1 ≤ i ≤ #(t(p))

The set of finite and infinite terms is denoted by T ∞(Σ,X ).
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Infinite Terms as Metric Space

Definition

We define a metric d on T ∞(Σ,X ) by:

d(s, t) = 2−|p| where p is the highest position such that s(p) 6= t(p)

Note that d(s, t) = 0 ⇐⇒ s = t.

Example
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The first difference is at depth 2, hence d(s, t) = 2−2 = 0.25.
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Infinitary Rewriting

Example

f (x , x)→ f (a, b)

a→ c(a)

b → c(b)

f (a, b)→ f (c(a), b)

→ f (c(c(a)), b)

→→→ f (c(c(c(. . .))), b)

→ f (c(c(c(. . .))), c(b))

→ f (c(c(c(. . .))), c(c(b)))

→→→ f (c(c(c(. . .))), c(c(c(. . .))))

→ f (a, b)

→ . . .

We need transfinite reductions. . .
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Ordinals

0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . , ω + ω = ω · 2, . . . , ω · 3, . . . , ω2, . . . , ωω, . . .

ω ω · 2 ω · 3 . . . ω2

Note that ω is the smallest infinite ordinal.
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Ordinals

Definition
A set S is transitive if x ∈ S implies x ⊆ S .

An ordinal is a transitive set whose elements are transitive sets.

Example (0, 1, 2, 3, . . .)

∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, . . .

Definition
We define α < β ⇐⇒ α ∈ β.

Lemma
The relation < is a total order on ordinals.

Lemma

For every ordinal β, we have β = {α | α < β}.
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Ordinals

Definition

For ordinals α, we define α+ = α ∪ {α}, the successor of α.

An ordinal α is a successor ordinal if α = β+ for some ordinal β.

If α 6= 0 and α is not a successor ordinal, then α is called limit ordinal.

ω ω · 2 ω · 3 . . . ω2

Example

Successor ordinals: 1, 2, ω + 1, ω · 3 + 2, . . . Limit ordinals: ω, ω · 2, ω · 3, ω2, . . .
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Infinitary Rewriting

Transfinite Reductions

Example

f (x , x)→ f (a, b)

a→ c(a)

b → c(b)

A reduction of length ω · 2 + 1:

f (a, b)→ω f (cω, b)→ω f (cω, cω)→ f (a, b)

A reduction of length ω + 1:

f (a, b)→ω f (cω, cω)→ f (a, b)

by alternating f (a, b)→ f (c(a), b)→ f (c(a), c(b))→ . . ..
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Transfinite Reductions

Definition

Let α be an ordinal, and τ : (tβ → tβ+1)β<α a sequence of reduction steps.

We use dβ to denote the depth of the rewrite step tβ → tβ+1.

Then τ is an infinite reduction of length α if for every limit ordinal λ < α:

1 the distance d(tβ , tλ) tends to 0, ∀ε > 0. ∃β < λ. ∀β < γ < λ. d(tγ , tλ) ≤ ε

2 the depth dβ tends to infinity ∀n. ∃β < λ. ∀β < γ < λ. dγ ≥ n

as β approaches λ from below.

Example

Let R = {a→ a, b → b}. Condition (1) excludes jumps in the limit:

a→ a→ a→ . . . b︸︷︷︸
tω

→ b → . . .
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Definition
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1 the distance d(tβ , tλ) tends to 0, ∀ε > 0. ∃β < λ. ∀β < γ < λ. d(tγ , tλ) ≤ ε

2 the depth dβ tends to infinity ∀n. ∃β < λ. ∀β < γ < λ. dγ ≥ n

as β approaches λ from below.

Example (We want more than Cauchy-convergence. . . )

Let R = {f (x)→ f (c(x))}. Condition (2) excludes sequences like:

f (a)→ε f (c(a))→ε f (c(c(a)))→ε . . .→ω
ε f (cω)→ . . .

where the activity does not move downwards.
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Infinitary Rewriting

Transfinite Reductions Visualized

0 ! !·2 !·3 !2

The blue lines indicate the depth of the activity/rewrite steps.

The activity tends to infinity when approaching limit ordinals.
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Infinitary Rewriting

Why more than Cauchy-convergence?

We consider the TRS:

f (x , y)→ f (y , x)

a→ b

We start from f (a, a) and trace the left occurrence of a:

f (a, a)→ f (a, a)→ f (a, a)→ f (a, a)→ω ?

The rewrite sequence without overlining is Cauchy-convergent.

However, what are the residuals of the left a after ω-many steps?

Although it appears as if the term has a limit, this is only a syntactic accident.
The subterms get swapped all the time. . .
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Infinitary Rewriting

Definition
A reduction of length α is strongly convergent if for every limit ordinal λ ≤ α the
depth dβ tends to infinity as β approaches λ from below, and divergent, otherwise.

Example

1 R = { a→ b, b → a }
a→ b → a→ b → . . .

. . . is a divergent rewrite sequence of length ω.

2 R = { f (x , x)→ f (a, b), a→ c(a), b → c(b }

f (a, b)→ω f (cω, b)→ω f (cω, cω)→ f (a, b)

. . . is a strongly convergent rewrite sequence of length ω · 2 + 1.

Lemma
A reduction τ is strongly convergent

⇐⇒ for every n ∈ N there are only finitely many steps at depth n in τ .
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Definition
We write s →→→ t if the rewrite sequence is strongly convergent and with limit t.

Example

R = { a→ c(a) }. Then a→→→ cω.

Lemma

Every proper prefix of a (even divergent) rewrite sequence is strongly convergent.

Example

R = { f (x , x)→ f (a, b), a→ c(a), b → c(b }

f (a, b)→ω·2+1 f (a, b)→ω·2+1 f (a, b)→ω·2+1 . . .

. . . is a divergent rewrite sequence of length ω2. But every prefix is convergent!
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Infinitary Rewriting

Comparison finitary vs. infinitary rewriting

finitary rewriting infinitary rewriting

finite reduction strongly convergent reduction

infinite reduction divergent reduction

Definition
Let R be a TRS and s a term. Then the term s is

• infinitary strongly normalizing (SN∞) if s admits no divergent reductions,

• infinitary weakly normalizing (WN∞) if s admits a reduction to normal form,

• infinitary confluent (CR∞) if ∀t1 →→→s →→→ t2. t1 →→→ · →→→t2.

Likewise R has the respective property if all terms from T ∞(Σ,X ) have.

Example

• Let R = { a→ c(a) }. Then R is WN∞, SN∞ and CR∞.

• Let R = { a→ a, a→ c(a) }. Then R is WN∞ and CR∞, but not SN∞.
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Infinitary Rewriting

Remark

• SN∞ 6⇒ SN ∨WN a→ c(a)
Here, a→→→ cω which is a normal form.

• SN 6⇒ SN∞ ∨WN∞ I (x)→ x
Here, I (I (I (. . .))) rewrites only to itself.

• CR∞ 6⇒ CR a→ b, a→ c , b → d(b), c → d(c)
Here, ¬(b ↓ c), but b →→→ dω →→→c.

• CR 6⇒ CR∞ A(x)→ x , B(x)→ x
Here, Aω →→→(AB)ω →→→ Bω.

Remark

The example A(x)→ x , B(x)→ x shows: not every orthogonal TRSs is CR∞.

Even one collapsing rule is sufficient to violate CR∞.
Take R = { f (x , y)→ y }. Then

f (x , f (x , f (x , . . .))) →→→f (x , f (y , f (x , f (y , . . .))))→→→ f (y , f (y , f (y , . . .)))
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Here, I (I (I (. . .))) rewrites only to itself.

• CR∞ 6⇒ CR a→ b, a→ c , b → d(b), c → d(c)
Here, ¬(b ↓ c), but b →→→ dω →→→c.

• CR 6⇒ CR∞ A(x)→ x , B(x)→ x
Here, Aω →→→(AB)ω →→→ Bω.

Remark

The example A(x)→ x , B(x)→ x shows: not every orthogonal TRSs is CR∞.

Even one collapsing rule is sufficient to violate CR∞.
Take R = { f (x , y)→ y }. Then

f (x , f (x , f (x , . . .))) →→→f (x , f (y , f (x , f (y , . . .))))→→→ f (y , f (y , f (y , . . .)))
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Infinitary Rewriting

Remark (The failure of Newmann’s Lemma for infinitary rewriting)

WCR ∧ SN∞ 6⇒ CR∞

For example:

R = { a→ b(a),

a→ c(a),

c(b(x))→ b(b(x)) }

is WCR and SN∞, but not CR∞.
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Infinitary Rewriting

Results for (Weakly) Orthogonal TRSs

Theorem

Every weakly orthogonal TRS without collapsing rules is CR∞.

Definition

A TRS R is UN∞ if s →→→· →→→ t ⇒ s = t for all normal forms s, t ∈ T ∞(Σ,X ).

Theorem

Every orthogonal TRS is UN∞.

Example

Weakly orthogonal TRSs are not necessarily UN∞:

S(P(x))→ x P(S(x))→ x

Then

Sω →→→S1(P2(S3(P4(. . .))))→→→ Pω
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Infinitary Rewriting

Compression and Parallel Moves

Theorem (Compression)

Let R be an left-linear TRS. Then s →→→ t implies s →≤ω t.

That is, every strongly convergent reduction can be compressed to length ≤ ω.

Theorem (Parallel Moves)

Let R be an orthogonal TRS. Then t1 ‖→s →→→ t2 ⇒ t1 →→→ · ‖→t2.

s

t1

t2

s ′

Term Rewriting Systems - Lecture 11 21/21



Infinitary Rewriting

Compression and Parallel Moves

Theorem (Compression)

Let R be an left-linear TRS. Then s →→→ t implies s →≤ω t.

That is, every strongly convergent reduction can be compressed to length ≤ ω.

Theorem (Parallel Moves)

Let R be an orthogonal TRS. Then t1 ‖→s →→→ t2 ⇒ t1 →→→ · ‖→t2.

s

t1

t2

s ′

Term Rewriting Systems - Lecture 11 21/21


	lecture 11
	Overview
	Infinitary Rewriting


