- Lecture 1: Introduction, Abstract Rewriting
- Lecture 2: Term Rewriting
- Lecture 3: Combinatory Logic
- Lecture 4: Termination
- Lecture 5: Matching, Unification
- Lecture 6: Equational Reasoning, Completion
- Lecture 7: Confluence
- Lecture 8: Modularity
- Lecture 9: Strategies
- Lecture 10: Decidability
- Lecture 11: Infinitary Rewriting

Outline

- Overview
- Infinitary Rewriting

Infinitary Rewriting

Example (The Stream of Natural Numbers)

Infinite Terms

Definition

An infinite term is a partial map $t: \mathbb{N}^* \rightharpoonup \Sigma$ from positions to symbols such that:

- $t(\epsilon) \in \Sigma$, and
- $t(ip) \in \Sigma \iff 1 \le i \le \#(t(p))$

Infinite Terms

Definition

An infinite term is a partial map $t: \mathbb{N}^* \rightharpoonup \Sigma$ from positions to symbols such that:

- $t(\epsilon) \in \Sigma$, and
- $t(ip) \in \Sigma \iff 1 \le i \le \#(t(p))$

The set of finite and infinite terms is denoted by $\mathcal{T}^{\infty}(\Sigma, \mathcal{X})$.

Definition

We define a metric d on $\mathcal{T}^{\infty}(\Sigma, \mathcal{X})$ by:

$$d(s,t)=2^{-|p|}$$
 where p is the highest position such that $s(p)\neq t(p)$

The first difference is at depth 2, hence $d(s, t) = 2^{-2} = 0.25$

Definition

We define a metric d on $\mathcal{T}^{\infty}(\Sigma, \mathcal{X})$ by:

$$d(s,t)=2^{-|p|}$$
 where p is the highest position such that $s(p)
eq t(p)$

Note that
$$d(s,t) = 0 \iff s = t$$
.

The first difference is at depth 2, hence $d(s, t) = 2^{-2} = 0.25$

Definition

We define a metric d on $\mathcal{T}^{\infty}(\Sigma, \mathcal{X})$ by:

$$d(s,t)=2^{-|p|}$$
 where p is the highest position such that $s(p) \neq t(p)$

Note that $d(s,t) = 0 \iff s = t$.

Definition

We define a metric d on $\mathcal{T}^{\infty}(\Sigma, \mathcal{X})$ by:

$$d(s,t)=2^{-|p|}$$
 where p is the highest position such that $s(p) \neq t(p)$

Note that $d(s,t) = 0 \iff s = t$.

Example

The first difference is at depth 2, hence $d(s, t) = 2^{-2} = 0.25$.

$$f(x,x) \to f(a,b)$$

 $a \to c(a)$
 $b \to c(b)$

Example

$$f(x,x) \rightarrow f(a,b)$$

 $a \rightarrow c(a)$
 $b \rightarrow c(b)$

f(a,b)

$$f(x,x) \rightarrow f(a,b)$$

 $a \rightarrow c(a)$
 $b \rightarrow c(b)$

$$f(a,b) \rightarrow f(c(a),b)$$

$$f(x,x) \rightarrow f(a,b)$$

 $a \rightarrow c(a)$
 $b \rightarrow c(b)$

$$f(a,b) \rightarrow f(c(a),b)$$

 $\rightarrow f(c(c(a)),b)$

$$f(x,x) \to f(a,b)$$

 $a \to c(a)$
 $b \to c(b)$

$$f(a,b) \rightarrow f(c(a),b)$$

 $\rightarrow f(c(c(a)),b)$
 $\longrightarrow f(c(c(c(...))),b)$

$$f(x,x) \rightarrow f(a,b)$$

 $a \rightarrow c(a)$
 $b \rightarrow c(b)$

$$f(a,b) \rightarrow f(c(a),b)$$

 $\rightarrow f(c(c(a)),b)$
 $\rightarrow f(c(c(c(...))),b)$
 $\rightarrow f(c(c(c(...))),c(b))$

$$f(x,x) \to f(a,b)$$

 $a \to c(a)$
 $b \to c(b)$

$$egin{aligned} f(a,b) &
ightarrow f(c(a),b) \
ightarrow f(c(c(c(\ldots))),b) \
ightarrow f(c(c(c(\ldots))),c(b)) \
ightarrow f(c(c(c(\ldots))),c(c(b))) \end{aligned}$$

$$f(x,x) \rightarrow f(a,b)$$

 $a \rightarrow c(a)$
 $b \rightarrow c(b)$

$$f(a,b) \rightarrow f(c(a),b)$$

 $\rightarrow f(c(c(a)),b)$
 $\rightarrow f(c(c(c(...))),b)$
 $\rightarrow f(c(c(c(...))),c(b))$
 $\rightarrow f(c(c(c(...))),c(c(b)))$
 $\rightarrow f(c(c(c(...))),c(c(c(...))))$

$$f(x,x) \rightarrow f(a,b)$$

 $a \rightarrow c(a)$
 $b \rightarrow c(b)$

$$egin{aligned} f(a,b) &
ightarrow f(c(a),b) \
ightarrow f(c(c(c(\ldots))),b) \
ightarrow f(c(c(c(\ldots))),c(b)) \
ightarrow f(c(c(c(\ldots))),c(c(b))) \
ightarrow f(c(c(c(\ldots))),c(c(c(\ldots)))) \
ightarrow f(a,b) \end{aligned}$$

$$f(x,x) o f(a,b)$$

 $a o c(a)$
 $b o c(b)$

$$f(a,b) \rightarrow f(c(a),b)$$

$$\rightarrow f(c(c(a)),b)$$

$$\rightarrow f(c(c(c(...))),b)$$

$$\rightarrow f(c(c(c(...))),c(b))$$

$$\rightarrow f(c(c(c(...))),c(c(b)))$$

$$\rightarrow f(c(c(c(...))),c(c(c(...))))$$

$$\rightarrow f(a,b)$$

$$\rightarrow ...$$

Example

$$f(x,x) \rightarrow f(a,b)$$

 $a \rightarrow c(a)$
 $b \rightarrow c(b)$

$$f(a,b)
ightharpoonup f(c(a),b)
ightharpoonup f(c(c(a)),b)
ightharpoonup f(c(c(c(...))),b)
ightharpoonup f(c(c(c(...))),c(b))
ightharpoonup f(c(c(c(...))),c(c(c(...))))
ightharpoonup f(a,b)
ightharpoonup ...$$

We need transfinite reductions...

$$0,\ 1,\ 2,\ \ldots,\ \omega,\ \omega+1,\ \omega+2,\ldots,\omega+\omega=\omega\cdot 2,\ \ldots,\ \omega\cdot 3,\ldots,\omega^2,\ldots,\omega^\omega,\ldots$$

Note that ω is the smallest infinite ordinal.

Definition

A set S is transitive if $x \in S$ implies $x \subseteq S$.

Definition

A set S is transitive if $x \in S$ implies $x \subseteq S$.

An ordinal is a transitive set whose elements are transitive sets.

Definition

A set S is transitive if $x \in S$ implies $x \subseteq S$.

An ordinal is a transitive set whose elements are transitive sets.

Example (0, 1, 2, 3, ...)

 \varnothing , $\{\varnothing\}$, $\{\varnothing,\{\varnothing\}\}$, $\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}$, ...

Definition

A set S is transitive if $x \in S$ implies $x \subseteq S$.

An ordinal is a transitive set whose elements are transitive sets.

Example (0, 1, 2, 3, ...)

$$\varnothing$$
, $\{\varnothing\}$, $\{\varnothing,\{\varnothing\}\}$, $\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}$, ...

Definition

We define $\alpha < \beta \iff \alpha \in \beta$.

Definition

A set S is transitive if $x \in S$ implies $x \subseteq S$.

An ordinal is a transitive set whose elements are transitive sets.

Example (0, 1, 2, 3, ...)

$$\varnothing$$
, $\{\varnothing\}$, $\{\varnothing,\{\varnothing\}\}$, $\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}\}$, ...

Definition

We define $\alpha < \beta \iff \alpha \in \beta$.

Lemma

The relation < is a total order on ordinals.

Definition

A set S is transitive if $x \in S$ implies $x \subseteq S$.

An ordinal is a transitive set whose elements are transitive sets.

Example (0, 1, 2, 3, ...)

 $\varnothing, \ \{\varnothing\}, \ \{\varnothing, \{\varnothing\}\}, \ \{\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}\}, \ldots$

Definition

We define $\alpha < \beta \iff \alpha \in \beta$.

Lemma

The relation < is a total order on ordinals.

Lemma

For every ordinal β , we have $\beta = \{\alpha \mid \alpha < \beta\}$.

Definition

For ordinals α , we define $\alpha^+ = \alpha \cup \{\alpha\}$, the successor of α .

Definition

For ordinals α , we define $\alpha^+ = \alpha \cup \{\alpha\}$, the successor of α .

An ordinal α is a successor ordinal if $\alpha = \beta^+$ for some ordinal β .

Example

Successor ordinals: 1, 2, $\omega + 1$, $\omega \cdot 3 + 2$, ...

Definition

For ordinals α , we define $\alpha^+ = \alpha \cup \{\alpha\}$, the successor of α .

An ordinal α is a successor ordinal if $\alpha = \beta^+$ for some ordinal β .

If $\alpha \neq 0$ and α is not a successor ordinal, then α is called <u>limit</u> ordinal.

Example

Successor ordinals: 1, 2, $\omega + 1$, $\omega \cdot 3 + 2$, ... Limit ordinals: ω , $\omega \cdot 2$, $\omega \cdot 3$, ω^2 , ...

$$f(x,x) \rightarrow f(a,b)$$

 $a \rightarrow c(a)$
 $b \rightarrow c(b)$

Example

$$f(x,x) \rightarrow f(a,b)$$

 $a \rightarrow c(a)$
 $b \rightarrow c(b)$

Example

$$f(x,x) \rightarrow f(a,b)$$

 $a \rightarrow c(a)$
 $b \rightarrow c(b)$

$$f(a,b) \rightarrow^{\omega} f(c^{\omega},b)$$

Example

$$f(x,x) \rightarrow f(a,b)$$

 $a \rightarrow c(a)$
 $b \rightarrow c(b)$

$$f(a,b) \rightarrow^{\omega} f(c^{\omega},b) \rightarrow^{\omega} f(c^{\omega},c^{\omega})$$

Example

$$f(x,x) \rightarrow f(a,b)$$

 $a \rightarrow c(a)$
 $b \rightarrow c(b)$

$$f(a,b) \rightarrow^{\omega} f(c^{\omega},b) \rightarrow^{\omega} f(c^{\omega},c^{\omega}) \rightarrow f(a,b)$$

Example

$$f(x,x) \rightarrow f(a,b)$$

 $a \rightarrow c(a)$
 $b \rightarrow c(b)$

A reduction of length $\omega \cdot 2 + 1$:

$$f(a,b) \rightarrow^{\omega} f(c^{\omega},b) \rightarrow^{\omega} f(c^{\omega},c^{\omega}) \rightarrow f(a,b)$$

A reduction of length $\omega + 1$:

Example

$$f(x,x) \rightarrow f(a,b)$$

 $a \rightarrow c(a)$
 $b \rightarrow c(b)$

A reduction of length $\omega \cdot 2 + 1$:

$$f(a,b) \rightarrow^{\omega} f(c^{\omega},b) \rightarrow^{\omega} f(c^{\omega},c^{\omega}) \rightarrow f(a,b)$$

A reduction of length $\omega + 1$:

$$f(a,b) \rightarrow^{\omega} f(c^{\omega},c^{\omega})$$

Example

$$f(x,x) \rightarrow f(a,b)$$

 $a \rightarrow c(a)$
 $b \rightarrow c(b)$

A reduction of length $\omega \cdot 2 + 1$:

$$f(a,b) \rightarrow^{\omega} f(c^{\omega},b) \rightarrow^{\omega} f(c^{\omega},c^{\omega}) \rightarrow f(a,b)$$

A reduction of length $\omega + 1$:

$$f(a,b) \rightarrow^{\omega} f(c^{\omega},c^{\omega}) \rightarrow f(a,b)$$

Example

$$f(x,x) \rightarrow f(a,b)$$

 $a \rightarrow c(a)$
 $b \rightarrow c(b)$

A reduction of length $\omega \cdot 2 + 1$:

$$f(a,b) \rightarrow^{\omega} f(c^{\omega},b) \rightarrow^{\omega} f(c^{\omega},c^{\omega}) \rightarrow f(a,b)$$

A reduction of length $\omega + 1$:

$$f(a,b) \rightarrow^{\omega} f(c^{\omega},c^{\omega}) \rightarrow f(a,b)$$

by alternating $f(a,b) \rightarrow f(c(a),b) \rightarrow f(c(a),c(b)) \rightarrow \dots$

Definition

Let α be an ordinal, and $\tau:(t_{\beta}\to t_{\beta+1})_{\beta<\alpha}$ a sequence of reduction steps.

Definition

Let α be an ordinal, and $\tau:(t_{\beta}\to t_{\beta+1})_{\beta<\alpha}$ a sequence of reduction steps.

We use d_{β} to denote the depth of the rewrite step $t_{\beta} \to t_{\beta+1}$.

Definition

Let α be an ordinal, and $\tau:(t_{\beta}\to t_{\beta+1})_{\beta<\alpha}$ a sequence of reduction steps.

We use d_{β} to denote the depth of the rewrite step $t_{\beta} \to t_{\beta+1}$.

Then τ is an infinite reduction of length α if for every limit ordinal $\lambda < \alpha$:

- 1 the distance $d(t_{\beta}, t_{\lambda})$ tends to 0, $\forall \epsilon > 0$. $\exists \beta < \lambda$. $\forall \beta < \gamma < \lambda$. $d(t_{\gamma}, t_{\lambda}) \leq \epsilon$
- **2** the depth d_{β} tends to infinity $\forall n. \exists \beta < \lambda. \forall \beta < \gamma$
- as β approaches λ from below.

Term Rewriting Systems - Lecture 11

Definition

Let α be an ordinal, and $\tau: (t_{\beta} \to t_{\beta+1})_{\beta < \alpha}$ a sequence of reduction steps.

We use d_{eta} to denote the depth of the rewrite step $t_{eta} o t_{eta+1}.$

Then τ is an infinite reduction of length α if for every limit ordinal $\lambda < \alpha$:

- 1 the distance $d(t_{\beta}, t_{\lambda})$ tends to 0, $\forall \epsilon > 0$. $\exists \beta < \lambda$. $\forall \beta < \gamma < \lambda$. $d(t_{\gamma}, t_{\lambda}) \leq \epsilon$

as β approaches λ from below.

Example

Let $R = \{a \rightarrow a, b \rightarrow b\}$. Condition (1) excludes jumps in the limit:

$$a \to a \to a \to \dots \underbrace{b}_{t_{i}} \to b \to \dots$$

Definition

Let α be an ordinal, and $\tau:(t_{\beta}\to t_{\beta+1})_{\beta<\alpha}$ a sequence of reduction steps.

We use d_{eta} to denote the depth of the rewrite step $t_{eta} o t_{eta+1}.$

Then τ is an infinite reduction of length α if for every limit ordinal $\lambda < \alpha$:

- **1** the distance $d(t_{\beta}, t_{\lambda})$ tends to 0, $\forall \epsilon > 0$. $\exists \beta < \lambda$. $\forall \beta < \gamma < \lambda$. $d(t_{\gamma}, t_{\lambda}) < \epsilon$
 - **2** the depth d_{β} tends to infinity $\forall n. \exists \beta < \lambda. \ \forall \beta < \gamma < \lambda. \ d_{\gamma} \geq n$
- as β approaches λ from below.

Example (We want more than Cauchy-convergence...)

Let $R = \{f(x) \to f(c(x))\}$. Condition (2) excludes sequences like:

$$f(a) \rightarrow_{\epsilon} f(c(a)) \rightarrow_{\epsilon} f(c(c(a))) \rightarrow_{\epsilon} \ldots \rightarrow_{\epsilon}^{\omega} f(c^{\omega}) \rightarrow \ldots$$

where the activity does not move downwards.

Transfinite Reductions Visualized

The blue lines indicate the depth of the activity/rewrite steps.

The activity tends to infinity when approaching limit ordinals.

We consider the TRS:

$$f(x,y) \to f(y,x)$$

 $a \to b$

We consider the TRS:

$$f(x,y) \to f(y,x)$$

 $a \to b$

We start from f(a, a) and trace the left occurrence of a:

We consider the TRS:

$$f(x,y) \to f(y,x)$$

 $a \to b$

We start from f(a, a) and trace the left occurrence of a:

$$f(\overline{a}, a) \to f(a, \overline{a}) \to f(\overline{a}, a) \to f(a, \overline{a}) \to^{\omega}$$
?

The rewrite sequence without overlining is Cauchy-convergent.

However, what are the residuals of the left a after ω -many steps?

We consider the TRS:

$$f(x,y) \to f(y,x)$$

 $a \to b$

We start from f(a, a) and trace the left occurrence of a:

$$f(\overline{a}, a) \rightarrow f(a, \overline{a}) \rightarrow f(\overline{a}, a) \rightarrow f(a, \overline{a}) \rightarrow^{\omega}$$
?

The rewrite sequence without overlining is Cauchy-convergent.

However, what are the residuals of the left a after ω -many steps?

Although it appears as if the term has a limit, this is only a syntactic accident.

The subterms get swapped all the time. . .

A reduction of length α is strongly convergent if for every limit ordinal $\lambda \leq \alpha$ the depth d_{β} tends to infinity as β approaches λ from below, and divergent, otherwise.

... is a divergent rewrite sequence of length ω .

$$R = \{ f(x,x) \to f(a,b), a \to c(a), b \to c(b) \}$$
$$f(a,b) \to^{\omega} f(c^{\omega},b) \to^{\omega} f(c^{\omega},c^{\omega}) \to f(a,b) \}$$

 \ldots is a strongly convergent rewrite sequence of length $\omega \cdot 2 + 1$

A reduction of length α is strongly convergent if for every limit ordinal $\lambda \leq \alpha$ the depth d_{β} tends to infinity as β approaches λ from below, and divergent, otherwise.

Example

$$\blacksquare R = \{ a \rightarrow b, b \rightarrow a \}$$

$$a \rightarrow b \rightarrow a \rightarrow b \rightarrow \dots$$

A reduction of length α is strongly convergent if for every limit ordinal $\lambda \leq \alpha$ the depth d_{β} tends to infinity as β approaches λ from below, and divergent, otherwise.

Example

 \ldots is a divergent rewrite sequence of length ω .

A reduction of length α is strongly convergent if for every limit ordinal $\lambda \leq \alpha$ the depth d_{β} tends to infinity as β approaches λ from below, and divergent, otherwise.

Example

$$R = \{ a \rightarrow b, b \rightarrow a \}$$

$$a \rightarrow b \rightarrow a \rightarrow b \rightarrow \dots$$

 \ldots is a divergent rewrite sequence of length ω .

2
$$R = \{ f(x,x) \rightarrow f(a,b), a \rightarrow c(a), b \rightarrow c(b) \}$$

$$f(a,b) \rightarrow^{\omega} f(c^{\omega},b) \rightarrow^{\omega} f(c^{\omega},c^{\omega}) \rightarrow f(a,b) \}$$

A reduction of length α is strongly convergent if for every limit ordinal $\lambda \leq \alpha$ the depth d_{β} tends to infinity as β approaches λ from below, and divergent, otherwise.

Example

$$R = \{ a \rightarrow b, b \rightarrow a \}$$

$$a \rightarrow b \rightarrow a \rightarrow b \rightarrow \dots$$

 \ldots is a divergent rewrite sequence of length ω .

$$2 R = \{ f(x,x) \to f(a,b), a \to c(a), b \to c(b) \}$$

$$f(a,b) \to^{\omega} f(c^{\omega},b) \to^{\omega} f(c^{\omega},c^{\omega}) \to f(a,b)$$

... is a strongly convergent rewrite sequence of length $\omega \cdot 2 + 1$.

A reduction of length α is strongly convergent if for every limit ordinal $\lambda \leq \alpha$ the depth d_{β} tends to infinity as β approaches λ from below, and divergent, otherwise.

Example

$$R = \{ a \rightarrow b, b \rightarrow a \}$$

$$a \rightarrow b \rightarrow a \rightarrow b \rightarrow \dots$$

 \ldots is a divergent rewrite sequence of length ω .

$$2 R = \{ f(x,x) \to f(a,b), a \to c(a), b \to c(b) \}$$

$$f(a,b) \to^{\omega} f(c^{\omega},b) \to^{\omega} f(c^{\omega},c^{\omega}) \to f(a,b)$$

... is a strongly convergent rewrite sequence of length $\omega \cdot 2 + 1$.

Lemma

A reduction τ is strongly convergent \iff for every $n \in \mathbb{N}$ there are only finitely many steps at depth n in τ .

But every prefix is convergent!

Example

$$R = \{ a \rightarrow c(a) \}$$
. Then $a \rightarrow \mapsto c^{\omega}$.

But every prefix is convergent!

Example

$$R = \{ a \rightarrow c(a) \}$$
. Then $a \rightarrow c^{\omega}$.

Lemma

Every proper prefix of a (even divergent) rewrite sequence is strongly convergent.

But every prefix is convergent!

Example

$$R = \{ a \rightarrow c(a) \}$$
. Then $a \rightarrow c^{\omega}$.

Lemma

Every proper prefix of a (even divergent) rewrite sequence is strongly convergent.

Example

$$R = \{ f(x,x) \rightarrow f(a,b), a \rightarrow c(a), b \rightarrow c(b) \}$$

$$f(a,b) \rightarrow^{\omega \cdot 2+1} f(a,b) \rightarrow^{\omega \cdot 2+1} f(a,b) \rightarrow^{\omega \cdot 2+1} \dots$$

... is a divergent rewrite sequence of length ω^2 .

Example

$$R = \{ a \rightarrow c(a) \}$$
. Then $a \rightarrow c^{\omega}$.

Lemma

Every proper prefix of a (even divergent) rewrite sequence is strongly convergent.

Example

$$R = \{ f(x,x) \rightarrow f(a,b), a \rightarrow c(a), b \rightarrow c(b) \}$$

$$f(a,b) \rightarrow^{\omega \cdot 2+1} f(a,b) \rightarrow^{\omega \cdot 2+1} f(a,b) \rightarrow^{\omega \cdot 2+1} \dots$$

... is a divergent rewrite sequence of length ω^2 . But every prefix is convergent!

finitary rewriting	infinitary rewriting
finite reduction	strongly convergent reduction
infinite reduction	divergent reduction

Then R is WN $^{\infty}$, SN $^{\infty}$ and CR $^{\infty}$

• Let $R = \{ a \to a, a \to c(a) \}$. Then R is WN $^{\infty}$ and CR $^{\infty}$, but not SN $^{\infty}$

finitary rewriting	infinitary rewriting
finite reduction	strongly convergent reduction
infinite reduction	divergent reduction

Definition

Let \mathcal{R} be a TRS and s a term. Then the term s is

- infinitary strongly normalizing (SN $^{\infty}$) if s admits no divergent reductions,
- infinitary weakly normalizing (WN $^{\infty}$) if s admits a reduction to normal form,
- infinitary confluent (\mathbb{CR}^{∞}) if $\forall t_1 \leftrightarrow s \rightarrow t_2 \cdot t_1 \rightarrow t_2 \cdot t_2 \cdot t_3 \rightarrow t_4 \cdot t_2 \cdot t_4 \cdot t_2 \cdot t_4 \cdot t_5 \cdot t_6 \cdot t_7 \cdot t_8 \cdot$

Likewise \mathcal{R} has the respective property if all terms from $\mathcal{T}^{\infty}(\Sigma, \mathcal{X})$ have.

Then R is WN^{∞} , SN^{∞} and CR^{∞} .

• Let $R = \{ a \to a, a \to c(a) \}$. Then R is WN^{∞} and CR^{∞} , but not SN°

finitary rewriting	infinitary rewriting
finite reduction	strongly convergent reduction
infinite reduction	divergent reduction

Definition

Let $\mathcal R$ be a TRS and s a term. Then the term s is

- infinitary strongly normalizing (SN $^{\infty}$) if s admits no divergent reductions,
- infinitary weakly normalizing (WN $^{\infty}$) if s admits a reduction to normal form,
- infinitary confluent (CR^{∞}) if $\forall t_1 \leftrightarrow s \rightarrow t_2 \cdot t_1 \rightarrow t_2 \cdot t_2 \rightarrow t_2 \cdot t_1 \rightarrow t_2 \cdot t_3 \cdot t_3 \cdot t_3 \cdot t_4 \cdot t_4 \cdot t_4 \cdot t_3 \cdot t_4 \cdot t_4 \cdot t_5 \cdot t_5 \cdot t_6 \cdot t_7 \cdot t_7 \cdot t_8 \cdot t_8 \cdot t_8 \cdot t_7 \cdot t_8 \cdot t_8$

Likewise $\mathcal R$ has the respective property if all terms from $\mathcal T^\infty(\Sigma,\mathcal X)$ have.

Example

• Let $R = \{ a \to c(a) \}$.

finitary rewriting	infinitary rewriting
finite reduction	strongly convergent reduction
infinite reduction	divergent reduction

Definition

Let \mathcal{R} be a TRS and s a term. Then the term s is

- infinitary strongly normalizing (SN $^{\infty}$) if s admits no divergent reductions,
- infinitary weakly normalizing (WN $^{\infty}$) if s admits a reduction to normal form,
- infinitary confluent (CR $^{\infty}$) if $\forall t_1 \leftrightarrow s \rightarrow t_2. t_1 \rightarrow t_2. t_1 \rightarrow t_2.$

Likewise \mathcal{R} has the respective property if all terms from $\mathcal{T}^{\infty}(\Sigma, \mathcal{X})$ have.

Example

• Let $R = \{ a \to c(a) \}$. Then R is WN^{∞} , SN^{∞} and CR^{∞} .

finitary rewriting	infinitary rewriting
finite reduction	strongly convergent reduction
infinite reduction	divergent reduction

Definition

Let \mathcal{R} be a TRS and s a term. Then the term s is

- infinitary strongly normalizing (SN $^{\infty}$) if s admits no divergent reductions,
- infinitary weakly normalizing (WN $^{\infty}$) if s admits a reduction to normal form,
- infinitary confluent (CR^{∞}) if $\forall t_1 \ \lessdot \leftarrow s \ \Rightarrow \Rightarrow \ t_2. \ t_1 \ \Rightarrow \Rightarrow \Rightarrow \leftarrow \leftarrow \leftarrow t_2.$

Likewise $\mathcal R$ has the respective property if all terms from $\mathcal T^\infty(\Sigma,\mathcal X)$ have.

Example

- Let $R = \{ a \to c(a) \}$. Then R is WN^{∞} , SN^{∞} and CR^{∞} .
- Let $R = \{ a \rightarrow a, a \rightarrow c(a) \}$.

finitary rewriting	infinitary rewriting
finite reduction	strongly convergent reduction
infinite reduction	divergent reduction

Definition

Let $\mathcal R$ be a TRS and s a term. Then the term s is

- infinitary strongly normalizing (SN $^{\infty}$) if s admits no divergent reductions,
- infinitary weakly normalizing (WN $^{\infty}$) if s admits a reduction to normal form,
- infinitary confluent (CR^{∞}) if $\forall t_1 \leftrightarrow s \rightarrow t_2. \ t_1 \rightarrow t_2. \ t_2 \rightarrow t_2.$

Likewise $\mathcal R$ has the respective property if all terms from $\mathcal T^\infty(\Sigma,\mathcal X)$ have.

Example

- Let $R = \{ a \to c(a) \}$. Then R is WN^{∞} , SN^{∞} and CR^{∞} .
- Let $R = \{ a \to a, a \to c(a) \}$. Then R is WN^{∞} and CR^{∞} , but not SN^{∞} .

• $SN^{\infty} \not\Rightarrow SN$

$$f(x, f(x, f(x, \dots))) \leftrightarrow f(x, f(y, f(x, f(y, \dots)))) \rightarrow f(y, f(y, f(y, \dots)))$$

• $SN^{\infty} \not\Rightarrow SN \vee WN$

$$f(x, f(x, f(x, \dots))) \leftrightarrow f(x, f(y, f(x, f(y, \dots)))) \rightarrow f(y, f(y, f(y, \dots)))$$

- $SN^{\infty} \not\Rightarrow SN \vee WN$ $a \rightarrow c(a)$ Here, $a \rightarrow c^{\omega}$ which is a normal form.
- SN SN^{∞}

$$f(x, f(x, f(x, ...))) \leftrightarrow f(x, f(y, f(x, f(y, ...)))) \Rightarrow f(y, f(y, f(y, ...)))$$

• $SN^{\infty} \not\Rightarrow SN \vee WN$

 $a \rightarrow c(a)$ Here, $a \rightarrow c^{\omega}$ which is a normal form.

• $SN \not\Rightarrow SN^{\infty}$

 $I(x) \rightarrow x$ Here, I(I(I(...))) rewrites only to itself.

$$f(x, f(x, f(x, ...))) \leftrightarrow f(x, f(y, f(x, f(y, ...)))) \rightarrow f(y, f(y, f(y, ...)))$$

- $SN^{\infty} \not\Rightarrow SN \vee WN$ $a \rightarrow c(a)$ Here, $a \rightarrow c^{\omega}$ which is a normal form.
- $SN \Rightarrow SN^{\infty} \lor WN^{\infty}$ $I(x) \to x$ Here, I(I(I(...))) rewrites only to itself.

$$f(x, f(x, f(x, \dots))) \leftrightarrow f(x, f(y, f(x, f(y, \dots)))) \rightarrow f(y, f(y, f(y, \dots)))$$

- $SN^{\infty} \not\Rightarrow SN \vee WN$ $a \rightarrow c(a)$ Here, $a \rightarrow c^{\omega}$ which is a normal form.
- $SN \not\Rightarrow SN^{\infty} \lor WN^{\infty}$ $I(x) \to x$ Here, $I(I(I(\ldots)))$ rewrites only to itself.
- CR^{∞} CR

$$f(x, f(x, f(x, ...))) \leftrightarrow f(x, f(y, f(x, f(y, ...)))) \Rightarrow f(y, f(y, f(y, ...)))$$

- $SN^{\infty} \not\Rightarrow SN \lor WN$ $a \to c(a)$ Here, $a \to c^{\omega}$ which is a normal form.
- $SN \not\Rightarrow SN^{\infty} \lor WN^{\infty}$ $I(x) \to x$ Here, $I(I(I(\dots)))$ rewrites only to itself.
- $CR^{\infty} \not\Rightarrow CR$ $a \to b, \ a \to c, \ b \to d(b), \ c \to d(c)$ Here, $\neg (b \downarrow c)$, but $b \to\!\!\!\to d^{\omega} \leftrightarrow\!\!\!\leftarrow c$.

$$f(x, f(x, f(x, ...))) \leftrightarrow f(x, f(y, f(x, f(y, ...)))) \rightarrow f(y, f(y, f(y, ...)))$$

- $SN^{\infty} \not\Rightarrow SN \vee WN$ $a \rightarrow c(a)$ Here, $a \rightarrow c^{\omega}$ which is a normal form.
- $SN \not\Rightarrow SN^{\infty} \lor WN^{\infty}$ $I(x) \to x$ Here, $I(I(I(\dots)))$ rewrites only to itself.
- $CR^{\infty} \not\Rightarrow CR$ $a \rightarrow b, \ a \rightarrow c, \ b \rightarrow d(b), \ c \rightarrow d(c)$ Here, $\neg(b \downarrow c)$, but $b \rightarrow\!\!\!\rightarrow\!\!\!\!\rightarrow d^{\omega} \leftrightarrow\!\!\!\!\leftarrow c$.
- CR CR^{∞}

$$f(x, f(x, f(x, \dots))) \leftrightarrow f(x, f(y, f(x, f(y, \dots)))) \rightarrow f(y, f(y, f(y, \dots)))$$

- $SN^{\infty} \not\Rightarrow SN \vee WN$ $a \to c(a)$ Here, $a \to c^{\omega}$ which is a normal form.
- $SN \not\Rightarrow SN^{\infty} \lor WN^{\infty}$ $I(x) \to x$ Here, I(I(I(...))) rewrites only to itself.
- $CR^{\infty} \not\Rightarrow CR$ $a \rightarrow b, \ a \rightarrow c, \ b \rightarrow d(b), \ c \rightarrow d(c)$ Here, $\neg(b \downarrow c)$, but $b \rightarrow d^{\omega} \leftrightarrow c$.
- $CR \not\Rightarrow CR^{\infty}$ $A(x) \rightarrow x, B(x) \rightarrow x$ Here, $A^{\omega} \leftrightarrow (AB)^{\omega} \rightarrow B^{\omega}$.

$$f(x, f(x, f(x, ...))) \leftrightarrow f(x, f(y, f(x, f(y, ...)))) \rightarrow f(y, f(y, f(y, ...)))$$

- $SN^{\infty} \not\Rightarrow SN \lor WN$ $a \to c(a)$ Here, $a \to c^{\omega}$ which is a normal form.
- $SN \not\Rightarrow SN^{\infty} \lor WN^{\infty}$ $I(x) \to x$ Here, I(I(I(...))) rewrites only to itself.
- $CR^{\infty} \not\Rightarrow CR$ $a \rightarrow b, \ a \rightarrow c, \ b \rightarrow d(b), \ c \rightarrow d(c)$ Here, $\neg(b \downarrow c)$, but $b \rightarrow d^{\omega} \leftrightarrow c$.
- $CR \not\Rightarrow CR^{\infty}$ $A(x) \rightarrow x, \ B(x) \rightarrow x$ $Here, \ A^{\omega} \not\leftarrow\leftarrow (AB)^{\omega} \xrightarrow{} B^{\omega}.$

Remark

The example $A(x) \to x$, $B(x) \to x$ shows: not every orthogonal TRSs is CR^{∞} .

- $SN^{\infty} \not\Rightarrow SN \vee WN$ $a \rightarrow c(a)$ Here, $a \rightarrow c^{\omega}$ which is a normal form.
- $SN \not\Rightarrow SN^{\infty} \lor WN^{\infty}$ $I(x) \to x$ Here, I(I(I(...))) rewrites only to itself.
- $CR^{\infty} \not\Rightarrow CR$ $a \rightarrow b, \ a \rightarrow c, \ b \rightarrow d(b), \ c \rightarrow d(c)$ Here, $\neg(b \downarrow c)$, but $b \rightarrow b \rightarrow d^{\omega} \leftrightarrow c$.
- $CR \not\Rightarrow CR^{\infty}$ $A(x) \rightarrow x, B(x) \rightarrow x$ $Here, A^{\omega} \leftrightsquigarrow (AB)^{\omega} \Longrightarrow B^{\omega}.$

Remark

The example $A(x) \to x$, $B(x) \to x$ shows: not every orthogonal TRSs is CR^{∞} .

Even one collapsing rule is sufficient to violate CR^{∞} .

- $SN^{\infty} \not\Rightarrow SN \lor WN$ $a \to c(a)$ Here, $a \to c^{\omega}$ which is a normal form.
- $SN \not\Rightarrow SN^{\infty} \lor WN^{\infty}$ $I(x) \to x$ Here, I(I(I(...))) rewrites only to itself.
- $CR^{\infty} \not\Rightarrow CR$ $a \rightarrow b, \ a \rightarrow c, \ b \rightarrow d(b), \ c \rightarrow d(c)$ Here, $\neg(b \downarrow c)$, but $b \rightarrow d^{\omega} \leftrightarrow c$.
- $CR \not\Rightarrow CR^{\infty}$ $A(x) \rightarrow x, B(x) \rightarrow x$ $Here, A^{\omega} \leftrightarrow (AB)^{\omega} \rightarrow B^{\omega}.$

Remark

The example $A(x) \to x$, $B(x) \to x$ shows: not every orthogonal TRSs is CR^{∞} .

$$f(x, f(x, f(x, \dots))) \leftrightarrow f(x, f(y, f(x, f(y, \dots)))) \rightarrow f(y, f(y, f(y, \dots)))$$

Remark (The failure of Newmann's Lemma for infinitary rewriting)

 $WCR \wedge SN^{\infty} \not\Rightarrow CR^{\infty}$

Remark (The failure of Newmann's Lemma for infinitary rewriting)

$$WCR \wedge SN^{\infty} \not\Rightarrow CR^{\infty}$$

For example:

$$R = \{ a \rightarrow b(a),$$

 $a \rightarrow c(a),$
 $c(b(x)) \rightarrow b(b(x)) \}$

is WCR and SN^{∞} , but not CR^{∞} .

Theorem

Every weakly orthogonal TRS without collapsing rules is CR^{∞} .

Theorem

Every weakly orthogonal TRS without collapsing rules is CR^{∞} .

Definition

Theorem

Every weakly orthogonal TRS without collapsing rules is CR^{∞} .

Definition

A TRS $\mathcal R$ is UN^∞ if $s \leftrightsquigarrow \cdot \leadsto t \Rightarrow s = t$ for all normal forms $s,t \in \mathcal T^\infty(\Sigma,\mathcal X)$.

Theorem

Every orthogonal TRS is UN^{∞} .

Theorem

Every weakly orthogonal TRS without collapsing rules is CR^{∞} .

Definition

A TRS $\mathcal R$ is UN^∞ if $s \leftrightsquigarrow \cdot \leadsto t \Rightarrow s = t$ for all normal forms $s,t \in \mathcal T^\infty(\Sigma,\mathcal X)$.

Theorem

Every orthogonal TRS is UN^{∞} .

Example

Weakly orthogonal TRSs are not necessarily UN^∞ :

$$S(P(x)) \rightarrow x$$

$$P(S(x)) \rightarrow x$$

Then

$$S^{\omega} \iff S^{1}(P^{2}(S^{3}(P^{4}(\ldots)))) \longrightarrow P^{\omega}$$

Compression and Parallel Moves

Theorem (Compression)

Let \mathcal{R} be an left-linear TRS. Then $s \rightarrow \mapsto t$ implies $s \rightarrow^{\leq \omega} t$.

That is, every strongly convergent reduction can be compressed to length $\leq \omega$.

Compression and Parallel Moves

Theorem (Compression)

Let \mathcal{R} be an left-linear TRS. Then $s \longrightarrow t$ implies $s \rightarrow^{\leq \omega} t$.

That is, every strongly convergent reduction can be compressed to length $\leq \omega$.

Theorem (Parallel Moves)

Let $\mathcal R$ be an orthogonal TRS. Then $t_1 \circledast s o t_2 \Rightarrow t_1 o t_2 \Leftrightarrow t_1 o t_2$.

