Overview

- Lecture 1: Introduction, Abstract Rewriting
- Lecture 2: Term Rewriting
- Lecture 3: Combinatory Logic
- Lecture 4: Termination
- Lecture 5: Matching, Unification
- Lecture 6: Equational Reasoning, Completion
- Lecture 7: Confluence
- Lecture 8: Modularity
- Lecture 9: Strategies
- Lecture 10: Decidability
- Lecture 11: Infinitary Rewriting

Overview

Outline

- Overview
- Infinitary Rewriting

Infinitary Rewriting

Infinite Terms

Definition

An infinite term is a partial map $t : \mathbb{N}^* \rightarrow \Sigma$ from positions to symbols such that:

- $t(\epsilon) \in \Sigma$, and
- $t(ip) \in \Sigma \iff 1 \le i \le \#(t(p))$

Infinite Terms

Definition

An infinite term is a partial map $t : \mathbb{N}^* \rightarrow \Sigma$ from positions to symbols such that:

- $t(\epsilon) \in \Sigma$, and
- $t(ip) \in \Sigma \iff 1 \le i \le \#(t(p))$

The set of finite and infinite terms is denoted by $\mathcal{T}^{\infty}(\Sigma, \mathcal{X})$.

Infinite Terms as Metric Space

Definition

We define a metric *d* on $\mathcal{T}^{\infty}(\Sigma, \mathcal{X})$ by:

 $d(s,t) = 2^{-|p|}$ where p is the highest position such that $s(p) \neq t(p)$

The first difference is at depth 2, hence $d(s, t) = 2^{-2} = 0.25$.

Infinite Terms as Metric Space

Definition

We define a metric *d* on $\mathcal{T}^{\infty}(\Sigma, \mathcal{X})$ by:

 $d(s,t) = 2^{-|p|}$ where p is the highest position such that $s(p) \neq t(p)$

Note that $d(s,t) = 0 \iff s = t$.

The first difference is at depth 2, hence $d(s, t) = 2^{-2} = 0.25$.

Infinite Terms as Metric Space

Definition

We define a metric *d* on $\mathcal{T}^{\infty}(\Sigma, \mathcal{X})$ by:

 $d(s,t) = 2^{-|p|}$ where p is the highest position such that $s(p) \neq t(p)$

Note that $d(s,t) = 0 \iff s = t$.

Infinite Terms as Metric Space

Definition

We define a metric *d* on $\mathcal{T}^{\infty}(\Sigma, \mathcal{X})$ by:

 $d(s,t) = 2^{-|p|}$ where p is the highest position such that $s(p) \neq t(p)$

Note that $d(s, t) = 0 \iff s = t$.

$$egin{array}{l} f(x,x)
ightarrow f(a,b) \ a
ightarrow c(a) \ b
ightarrow c(b) \end{array}$$

Example

$$egin{aligned} f(x,x) &
ightarrow f(a,b) \ a &
ightarrow c(a) \ b &
ightarrow c(b) \end{aligned}$$

f(a, b)

Example

$$egin{aligned} f(x,x) &
ightarrow f(a,b) \ a &
ightarrow c(a) \ b &
ightarrow c(b) \end{aligned}$$

 $f(a,b) \to f(c(a),b)$

$$egin{array}{l} f(x,x)
ightarrow f(a,b) \ a
ightarrow c(a) \ b
ightarrow c(b) \end{array}$$

$$egin{array}{l} f(a,b)
ightarrow f(c(a),b) \
ightarrow f(c(c(a)),b) \
ightarrow f(c(c(a)),b) \end{array}$$

$$egin{array}{l} f(x,x)
ightarrow f(a,b) \ a
ightarrow c(a) \ b
ightarrow c(b) \end{array}$$

$$egin{array}{ll} f(a,b) &
ightarrow f(c(a),b) \ &
ightarrow f(c(c(a)),b) \ &
ightarrow f(c(c(c(\ldots))),b) \end{array}$$

$$egin{array}{l} f(x,x)
ightarrow f(a,b) \ a
ightarrow c(a) \ b
ightarrow c(b) \end{array}$$

$$egin{aligned} f(a,b) &
ightarrow f(c(a),b) \ &
ightarrow f(c(c(a)),b) \ &
ightarrow f(c(c(c(\ldots))),b) \ &
ightarrow f(c(c(c(\ldots))),c(b)) \end{aligned}$$

$$egin{array}{l} f(x,x)
ightarrow f(a,b) \ a
ightarrow c(a) \ b
ightarrow c(b) \end{array}$$

$$\begin{array}{l} f(a,b) \rightarrow f(c(a),b) \\ \rightarrow f(c(c(a)),b) \\ \xrightarrow{\longrightarrow} f(c(c(c(\ldots))),b) \\ \rightarrow f(c(c(c(\ldots))),c(b)) \\ \rightarrow f(c(c(c(\ldots))),c(c(b)) \end{array}$$

$$egin{array}{l} f(x,x)
ightarrow f(a,b) \ a
ightarrow c(a) \ b
ightarrow c(b) \end{array}$$

$$\begin{array}{l} f(a,b) \rightarrow f(c(a),b) \\ \rightarrow f(c(c(a)),b) \\ \xrightarrow{\longrightarrow} f(c(c(c(\ldots))),b) \\ \rightarrow f(c(c(c(\ldots))),c(b)) \\ \rightarrow f(c(c(c(\ldots))),c(c(b))) \\ \xrightarrow{\longrightarrow} f(c(c(c(\ldots))),c(c(c(\ldots)))) \end{array}$$

$$egin{array}{l} f(x,x)
ightarrow f(a,b) \ a
ightarrow c(a) \ b
ightarrow c(b) \end{array}$$

$$\begin{array}{l} f(a,b) \rightarrow f(c(a),b) \\ \rightarrow f(c(c(a)),b) \\ \xrightarrow{\longrightarrow} f(c(c(c(\ldots))),b) \\ \rightarrow f(c(c(c(\ldots))),c(b)) \\ \rightarrow f(c(c(c(\ldots))),c(c(b))) \\ \xrightarrow{\longrightarrow} f(c(c(c(\ldots))),c(c(c(\ldots))) \\ \rightarrow f(a,b) \end{array}$$

$$egin{aligned} f(x,x) &
ightarrow f(a,b) \ a &
ightarrow c(a) \ b &
ightarrow c(b) \end{aligned}$$

$$f(a, b) \rightarrow f(c(a), b)$$

$$\rightarrow f(c(c(a)), b)$$

$$\rightarrow f(c(c(c(...))), b)$$

$$\rightarrow f(c(c(c(...))), c(b))$$

$$\rightarrow f(c(c(c(...))), c(c(b)))$$

$$\rightarrow f(c(c(c(...))), c(c(c(...))))$$

$$\rightarrow f(a, b)$$

$$\rightarrow ...$$

Example

$$egin{aligned} f(x,x) &
ightarrow f(a,b) \ a &
ightarrow c(a) \ b &
ightarrow c(b) \end{aligned}$$

$$f(a, b) \rightarrow f(c(a), b)$$

$$\rightarrow f(c(c(a)), b)$$

$$\rightarrow f(c(c(c(...))), b)$$

$$\rightarrow f(c(c(c((...))), c(b))$$

$$\rightarrow f(c(c(c((...))), c(c(b)))$$

$$\rightarrow f(c(c(c((...))), c(c(c(...))))$$

$$\rightarrow f(a, b)$$

$$\rightarrow ...$$

We need transfinite reductions...

0, 1, 2, ..., ω , ω + 1, ω + 2, ..., ω + ω = ω · 2, ..., ω · 3, ..., ω^2 , ..., ω^{ω} , ...

Note that ω is the smallest infinite ordinal.

Definition

A set S is transitive if $x \in S$ implies $x \subseteq S$.

Definition

A set S is transitive if $x \in S$ implies $x \subseteq S$.

An ordinal is a transitive set whose elements are transitive sets.

Definition

```
A set S is transitive if x \in S implies x \subseteq S.
```

An ordinal is a transitive set whose elements are transitive sets.

Example (0, 1, 2, 3, ...)

 $\varnothing, \{\varnothing\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}, \ldots$

Definition

A set S is transitive if $x \in S$ implies $x \subseteq S$.

An ordinal is a transitive set whose elements are transitive sets.

Example (0, 1, 2, 3, ...)

 $\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}, \ldots$

Definition

We define $\alpha < \beta \iff \alpha \in \beta$.

Definition

A set S is transitive if $x \in S$ implies $x \subseteq S$.

An ordinal is a transitive set whose elements are transitive sets.

Example (0, 1, 2, 3, ...)

 $\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}, \{\varnothing, \{\varnothing\}\}, \{\varnothing, \{\varnothing\}\}\}, \ldots$

Definition

We define $\alpha < \beta \iff \alpha \in \beta$.

Lemma

The relation < is a total order on ordinals.

Definition

A set S is transitive if $x \in S$ implies $x \subseteq S$.

An ordinal is a transitive set whose elements are transitive sets.

Example (0, 1, 2, 3, ...)

 $\varnothing, \{\varnothing\}, \{\varnothing, \{\varnothing\}\}, \{\varnothing, \{\varnothing\}\}, \{\emptyset, \{\emptyset\}\}\}, \ldots$

Definition

We define $\alpha < \beta \iff \alpha \in \beta$.

Lemma

The relation < is a total order on ordinals.

Lemma

For every ordinal β , we have $\beta = \{ \alpha \mid \alpha < \beta \}.$

Definition

For ordinals α , we define $\alpha^+ = \alpha \cup \{\alpha\}$, the successor of α .

Definition

For ordinals α , we define $\alpha^+ = \alpha \cup \{\alpha\}$, the successor of α .

An ordinal α is a successor ordinal if $\alpha = \beta^+$ for some ordinal β .

Example

Successor ordinals: 1, 2, $\omega + 1$, $\omega \cdot 3 + 2$, ...

Definition

For ordinals α , we define $\alpha^+ = \alpha \cup \{\alpha\}$, the successor of α .

An ordinal α is a successor ordinal if $\alpha = \beta^+$ for some ordinal β .

If $\alpha \neq 0$ and α is not a successor ordinal, then α is called limit ordinal.

Example

Successor ordinals: 1, 2, $\omega + 1$, $\omega \cdot 3 + 2$, ... Limit ordinals: ω , $\omega \cdot 2$, $\omega \cdot 3$, ω^2 , ...

Transfinite Reductions

$$f(x,x)
ightarrow f(a,b)$$

 $a
ightarrow c(a)$
 $b
ightarrow c(b)$

Example

$$f(x,x)
ightarrow f(a,b)$$

 $a
ightarrow c(a)$
 $b
ightarrow c(b)$

A reduction of length $\omega \cdot 2 + 1$:

f(a, b)

Example

$$f(x,x)
ightarrow f(a,b)$$

 $a
ightarrow c(a)$
 $b
ightarrow c(b)$

A reduction of length $\omega \cdot 2 + 1$:

$$f(a,b) \rightarrow^{\omega} f(c^{\omega},b)$$

Example

$$f(x,x)
ightarrow f(a,b)$$

 $a
ightarrow c(a)$
 $b
ightarrow c(b)$

A reduction of length $\omega \cdot 2 + 1$:

$$f(a,b) \rightarrow^{\omega} f(c^{\omega},b) \rightarrow^{\omega} f(c^{\omega},c^{\omega})$$

Example

$$f(x,x)
ightarrow f(a,b)$$

 $a
ightarrow c(a)$
 $b
ightarrow c(b)$

A reduction of length $\omega \cdot 2 + 1$:

$$f(a,b) \rightarrow^{\omega} f(c^{\omega},b) \rightarrow^{\omega} f(c^{\omega},c^{\omega}) \rightarrow f(a,b)$$

Example

$$f(x,x)
ightarrow f(a,b)$$

 $a
ightarrow c(a)$
 $b
ightarrow c(b)$

A reduction of length $\omega \cdot 2 + 1$:

$$f(a,b) \rightarrow^{\omega} f(c^{\omega},b) \rightarrow^{\omega} f(c^{\omega},c^{\omega}) \rightarrow f(a,b)$$

A reduction of length $\omega + 1$:

f(a, b)

Example

$$f(x,x)
ightarrow f(a,b)$$

 $a
ightarrow c(a)$
 $b
ightarrow c(b)$

A reduction of length $\omega \cdot 2 + 1$:

$$f(a,b) \rightarrow^{\omega} f(c^{\omega},b) \rightarrow^{\omega} f(c^{\omega},c^{\omega}) \rightarrow f(a,b)$$

A reduction of length $\omega + 1$:

$$f(a,b) \rightarrow^{\omega} f(c^{\omega},c^{\omega})$$

Example

$$f(x,x)
ightarrow f(a,b)$$

 $a
ightarrow c(a)$
 $b
ightarrow c(b)$

A reduction of length $\omega \cdot 2 + 1$:

$$f(a,b) \rightarrow^{\omega} f(c^{\omega},b) \rightarrow^{\omega} f(c^{\omega},c^{\omega}) \rightarrow f(a,b)$$

A reduction of length $\omega + 1$:

$$f(a,b) \rightarrow^{\omega} f(c^{\omega},c^{\omega}) \rightarrow f(a,b)$$

Example

$$f(x,x)
ightarrow f(a,b)$$

 $a
ightarrow c(a)$
 $b
ightarrow c(b)$

A reduction of length $\omega \cdot 2 + 1$:

$$f(a,b) \rightarrow^{\omega} f(c^{\omega},b) \rightarrow^{\omega} f(c^{\omega},c^{\omega}) \rightarrow f(a,b)$$

A reduction of length $\omega + 1$:

$$f(a,b)
ightarrow^{\omega} f(c^{\omega},c^{\omega})
ightarrow f(a,b)$$

by alternating $f(a,b) \rightarrow f(c(a),b) \rightarrow f(c(a),c(b)) \rightarrow \ldots$

Definition

Let α be an ordinal, and $\tau : (t_{\beta} \to t_{\beta+1})_{\beta < \alpha}$ a sequence of reduction steps.

Definition

Let α be an ordinal, and $\tau : (t_{\beta} \to t_{\beta+1})_{\beta < \alpha}$ a sequence of reduction steps.

We use d_{eta} to denote the depth of the rewrite step $t_{eta} o t_{eta+1}$.

Definition

Let α be an ordinal, and $\tau : (t_{\beta} \to t_{\beta+1})_{\beta < \alpha}$ a sequence of reduction steps.

We use d_{eta} to denote the depth of the rewrite step $t_{eta}
ightarrow t_{eta+1}.$

Then τ is an infinite reduction of length α if for every limit ordinal $\lambda < \alpha$:

- 1 the distance $d(t_{\beta}, t_{\lambda})$ tends to 0, $\forall \epsilon > 0$. $\exists \beta < \lambda$. $\forall \beta < \gamma < \lambda$. $d(t_{\gamma}, t_{\lambda}) \leq \epsilon$
- **2** the depth d_{β} tends to infinity

 $\forall n. \exists \beta < \lambda. \forall \beta < \gamma < \lambda. d_{\gamma} \ge n$

as β approaches λ from below.

Definition

Let α be an ordinal, and $\tau : (t_{\beta} \to t_{\beta+1})_{\beta < \alpha}$ a sequence of reduction steps.

We use d_{eta} to denote the depth of the rewrite step $t_{eta}
ightarrow t_{eta+1}$.

Then τ is an infinite reduction of length α if for every limit ordinal $\lambda < \alpha$:

- 1 the distance $d(t_{\beta}, t_{\lambda})$ tends to 0, $\forall \epsilon > 0$. $\exists \beta < \lambda$. $\forall \beta < \gamma < \lambda$. $d(t_{\gamma}, t_{\lambda}) \leq \epsilon$
- **2** the depth d_{β} tends to infinity

 $\forall n. \exists \beta < \lambda. \forall \beta < \gamma < \lambda. d_{\gamma} \ge n$

as β approaches λ from below.

Example

Let $R = \{a \rightarrow a, b \rightarrow b\}$. Condition (1) excludes jumps in the limit:

$$a \rightarrow a \rightarrow a \rightarrow \dots \underbrace{b}_{t_{\omega}} \rightarrow b \rightarrow \dots$$

Definition

Let α be an ordinal, and $\tau : (t_{\beta} \to t_{\beta+1})_{\beta < \alpha}$ a sequence of reduction steps.

We use d_{eta} to denote the depth of the rewrite step $t_{eta}
ightarrow t_{eta+1}.$

Then τ is an infinite reduction of length α if for every limit ordinal $\lambda < \alpha$:

- 1 the distance $d(t_{\beta}, t_{\lambda})$ tends to 0, $\forall \epsilon > 0$. $\exists \beta < \lambda$. $\forall \beta < \gamma < \lambda$. $d(t_{\gamma}, t_{\lambda}) \leq \epsilon$
- **2** the depth d_{β} tends to infinity

 $\forall n. \exists \beta < \lambda. \forall \beta < \gamma < \lambda. d_{\gamma} > n$

as β approaches λ from below.

Example (We want more than Cauchy-convergence...) Let $R = \{f(x) \rightarrow f(c(x))\}$. Condition (2) excludes sequences like: $f(a) \rightarrow_{\epsilon} f(c(a)) \rightarrow_{\epsilon} f(c(c(a))) \rightarrow_{\epsilon} \dots \rightarrow_{\epsilon}^{\omega} f(c^{\omega}) \rightarrow \dots$

where the activity does not move downwards.

Infinitary Rewriting

Transfinite Reductions Visualized

The blue lines indicate the depth of the activity/rewrite steps.

The activity tends to infinity when approaching limit ordinals.

Infinitary Rewriting

Why more than Cauchy-convergence?

We consider the TRS:

$$egin{array}{l} f(x,y)
ightarrow f(y,x) \ a
ightarrow b \end{array}$$

Infinitary Rewriting

Why more than Cauchy-convergence?

We consider the TRS:

$$f(x,y) o f(y,x)$$

 $a o b$

We start from f(a, a) and trace the left occurrence of a:

Why more than Cauchy-convergence?

We consider the TRS:

$$f(x,y) o f(y,x)$$

 $a o b$

We start from f(a, a) and trace the left occurrence of a:

$$f(\overline{a},a)
ightarrow f(a,\overline{a})
ightarrow f(\overline{a},a)
ightarrow f(a,\overline{a})
ightarrow^{\omega}$$
 ?

The rewrite sequence without overlining is Cauchy-convergent. However, what are the residuals of the left *a* after ω -many steps?

Why more than Cauchy-convergence?

We consider the TRS:

$$f(x,y) o f(y,x)$$

 $a o b$

We start from f(a, a) and trace the left occurrence of a:

$$f(\overline{a},a) \rightarrow f(a,\overline{a}) \rightarrow f(\overline{a},a) \rightarrow f(a,\overline{a}) \rightarrow^{\omega}$$
?

The rewrite sequence without overlining is Cauchy-convergent.

However, what are the residuals of the left *a* after ω -many steps?

Although it appears as if the term has a limit, this is only a syntactic accident. The subterms get swapped all the time...

A reduction of length α is strongly convergent if for every limit ordinal $\lambda \leq \alpha$ the depth d_{β} tends to infinity as β approaches λ from below, and divergent, otherwise.

... is a divergent rewrite sequence of length ω . $R = \{ f(x, x) \to f(a, b), a \to c(a), b \to c(b \}$ $f(a, b) \to^{\omega} f(c^{\omega}, b) \to^{\omega} f(c^{\omega}, c^{\omega}) \to$

... is a strongly convergent rewrite sequence of length $\omega\cdot 2+1$.

A reduction of length α is strongly convergent if for every limit ordinal $\lambda \leq \alpha$ the depth d_{β} tends to infinity as β approaches λ from below, and divergent, otherwise.

Example

$$\mathbf{1} \ R = \{ a \to b, b \to a \}$$
$$a \to b \to a \to b \to \dots$$

A reduction of length α is strongly convergent if for every limit ordinal $\lambda \leq \alpha$ the depth d_{β} tends to infinity as β approaches λ from below, and divergent, otherwise.

Example

$$\blacksquare R = \{ a \rightarrow b, b \rightarrow a \}$$

$$a \rightarrow b \rightarrow a \rightarrow b \rightarrow \dots$$

... is a divergent rewrite sequence of length ω .

A reduction of length α is strongly convergent if for every limit ordinal $\lambda \leq \alpha$ the depth d_{β} tends to infinity as β approaches λ from below, and divergent, otherwise.

Example

$$R = \{ a \to b, b \to a \}$$
$$a \to b \to a \to b \to \dots$$

 \ldots is a divergent rewrite sequence of length ω .

2
$$R = \{ f(x, x) \rightarrow f(a, b), a \rightarrow c(a), b \rightarrow c(b) \}$$

$$f(a,b)
ightarrow^{\omega} f(c^{\omega},b)
ightarrow^{\omega} f(c^{\omega},c^{\omega})
ightarrow f(a,b)$$

A reduction of length α is strongly convergent if for every limit ordinal $\lambda \leq \alpha$ the depth d_{β} tends to infinity as β approaches λ from below, and divergent, otherwise.

Example

$$\mathbf{1} \ R = \{ a \to b, b \to a \}$$
$$a \to b \to a \to b \to \dots$$

... is a divergent rewrite sequence of length ω .

2
$$R = \{ f(x, x) \to f(a, b), a \to c(a), b \to c(b) \}$$

$$f(a,b)
ightarrow^{\omega} f(c^{\omega},b)
ightarrow^{\omega} f(c^{\omega},c^{\omega})
ightarrow f(a,b)$$

... is a strongly convergent rewrite sequence of length $\omega \cdot 2 + 1$.

A reduction of length α is strongly convergent if for every limit ordinal $\lambda \leq \alpha$ the depth d_{β} tends to infinity as β approaches λ from below, and divergent, otherwise.

Example

$$\mathbf{1} \ R = \{ a \to b, b \to a \}$$
$$a \to b \to a \to b \to \dots$$

... is a divergent rewrite sequence of length ω .

2
$$R = \{ f(x, x) \rightarrow f(a, b), a \rightarrow c(a), b \rightarrow c(b) \}$$

$$f(a,b)
ightarrow^{\omega} f(c^{\omega},b)
ightarrow^{\omega} f(c^{\omega},c^{\omega})
ightarrow f(a,b)$$

... is a strongly convergent rewrite sequence of length $\omega \cdot 2 + 1$.

Lemma

A reduction τ is strongly convergent \iff for every $n \in \mathbb{N}$ there are only finitely many steps at depth n in τ .

We write $s \rightarrow t$ if the rewrite sequence is strongly convergent and with limit t.

But every prefix is convergent!

We write $s \rightarrow t$ if the rewrite sequence is strongly convergent and with limit t.

Example

 $R = \{ a \rightarrow c(a) \}$. Then $a \rightarrow c^{\omega}$.

But every prefix is convergent!

We write $s \rightarrow t$ if the rewrite sequence is strongly convergent and with limit t.

Example

 $R = \{ a \rightarrow c(a) \}$. Then $a \rightarrow c^{\omega}$.

Lemma

Every proper prefix of a (even divergent) rewrite sequence is strongly convergent.

But every prefix is convergent!

We write $s \rightarrow t$ if the rewrite sequence is strongly convergent and with limit t.

Example

$$R = \{ a \rightarrow c(a) \}.$$
 Then $a \rightarrow c^{\omega}$.

Lemma

Every proper prefix of a (even divergent) rewrite sequence is strongly convergent.

Example

$$R = \{ f(x,x) \rightarrow f(a,b), a \rightarrow c(a), b \rightarrow c(b) \}$$

$$f(a,b) \rightarrow^{\omega \cdot 2+1} f(a,b) \rightarrow^{\omega \cdot 2+1} f(a,b) \rightarrow^{\omega \cdot 2+1} \dots$$

... is a divergent rewrite sequence of length ω^2 .

We write $s \rightarrow t$ if the rewrite sequence is strongly convergent and with limit t.

Example

$$R = \{ a \rightarrow c(a) \}.$$
 Then $a \rightarrow c^{\omega}$.

Lemma

Every proper prefix of a (even divergent) rewrite sequence is strongly convergent.

Example

$$R = \{ f(x,x) \rightarrow f(a,b), a \rightarrow c(a), b \rightarrow c(b) \}$$

$$f(a,b)
ightarrow^{\omega \cdot 2+1} f(a,b)
ightarrow^{\omega \cdot 2+1} f(a,b)
ightarrow^{\omega \cdot 2+1} \dots$$

... is a divergent rewrite sequence of length ω^2 . But every prefix is convergent!

Comparison finitary vs. infinitary rewriting

finitary rewriting	infinitary rewriting
finite reduction	strongly convergent reduction
infinite reduction	divergent reduction

Then *R* is WN^{∞} , SN^{∞} and CR^{∞} .

• Let $R = \{ a \rightarrow a, a \rightarrow c(a) \}$. Then R is WN^{∞} and CR^{∞} , but not SN^{∞} .

· ·	CT 11	1 CT 11	100 C 100
Comparisor	i finitary	vs. infinitary	rewriting
		· · · · · · · · · · · · · · · · · · ·	

finitary rewriting	infinitary rewriting
finite reduction	strongly convergent reduction
infinite reduction	divergent reduction

Let \mathcal{R} be a TRS and s a term. Then the term s is

- infinitary strongly normalizing (SN^{∞}) if s admits no divergent reductions,
- infinitary weakly normalizing (WN $^{\infty}$) if s admits a reduction to normal form,
- infinitary confluent (CR^{∞}) if $\forall t_1 \leftrightarrow s \rightarrow t_2$. $t_1 \rightarrow t_2$.

Likewise \mathcal{R} has the respective property if all terms from $\mathcal{T}^{\infty}(\Sigma, \mathcal{X})$ have.

Then *R* is WN^{∞} , SN^{∞} and CR^{∞} .

• Let $R = \{ a \rightarrow a, a \rightarrow c(a) \}$. Then R is WN^{∞} and CR^{∞} , but not SN^{∞} .

C	1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A	CT 11		1 CT 11	1. A.
(ompa	arison	tinitary	VS	infinitary	rewriting
Compt	115011	initial y	•	in the second se	i cui i cui g

finitary rewriting	infinitary rewriting
finite reduction	strongly convergent reduction
infinite reduction	divergent reduction

Let \mathcal{R} be a TRS and s a term. Then the term s is

- infinitary strongly normalizing (SN^{∞}) if s admits no divergent reductions,
- infinitary weakly normalizing (WN $^{\infty}$) if s admits a reduction to normal form,
- infinitary confluent (CR^{∞}) if $\forall t_1 \leftrightarrow s \rightarrow t_2$. $t_1 \rightarrow t_2$.

Likewise \mathcal{R} has the respective property if all terms from $\mathcal{T}^{\infty}(\Sigma, \mathcal{X})$ have.

Example

• Let $R = \{ a \rightarrow c(a) \}$.

C	1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A	CT 11		1 CT 11	1. A.
(ompa	arison	tinitary	VS	infinitary	rewriting
Compt	115011	initial y	•	in the second se	i cui i cui g

finitary rewriting	infinitary rewriting
finite reduction	strongly convergent reduction
infinite reduction	divergent reduction

Let \mathcal{R} be a TRS and s a term. Then the term s is

- infinitary strongly normalizing (SN^{∞}) if s admits no divergent reductions,
- infinitary weakly normalizing (WN $^{\infty}$) if s admits a reduction to normal form,
- infinitary confluent (CR^{∞}) if $\forall t_1 \leftrightarrow s \rightarrow t_2$. $t_1 \rightarrow t_2$.

Likewise \mathcal{R} has the respective property if all terms from $\mathcal{T}^{\infty}(\Sigma, \mathcal{X})$ have.

Example

• Let $R = \{ a \to c(a) \}$. Then R is WN^{∞} , SN^{∞} and CR^{∞} .

C	1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A	CT 11		1 CT 11	1. A.
(ompa	arison	tinitary	VS	infinitary	rewriting
Compt	115011	initial y	•	in the second se	i cui i cui g

finitary rewriting	infinitary rewriting
finite reduction	strongly convergent reduction
infinite reduction	divergent reduction

Let \mathcal{R} be a TRS and s a term. Then the term s is

- infinitary strongly normalizing (SN^{∞}) if s admits no divergent reductions,
- infinitary weakly normalizing (WN $^{\infty}$) if s admits a reduction to normal form,
- infinitary confluent (CR^{∞}) if $\forall t_1 \leftrightarrow s \rightarrow t_2$. $t_1 \rightarrow t_2$.

Likewise \mathcal{R} has the respective property if all terms from $\mathcal{T}^{\infty}(\Sigma, \mathcal{X})$ have.

Example

- Let $R = \{ a \to c(a) \}$. Then R is WN^{∞} , SN^{∞} and CR^{∞} .
- Let $R = \{ a \rightarrow a, a \rightarrow c(a) \}.$

C	1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A	CT 11		1 CT 11	1. A.
(ompa	arison	tinitary	VS	infinitary	rewriting
Compt	115011	initial y	v J.	in the second se	i cui i cui g

finitary rewriting	infinitary rewriting
finite reduction	strongly convergent reduction
infinite reduction	divergent reduction

Let \mathcal{R} be a TRS and s a term. Then the term s is

- infinitary strongly normalizing (SN^{∞}) if s admits no divergent reductions,
- infinitary weakly normalizing (WN $^{\infty}$) if s admits a reduction to normal form,
- infinitary confluent (CR^{∞}) if $\forall t_1 \leftrightarrow s \rightarrow t_2$. $t_1 \rightarrow t_2$.

Likewise \mathcal{R} has the respective property if all terms from $\mathcal{T}^{\infty}(\Sigma, \mathcal{X})$ have.

Example

- Let $R = \{ a \to c(a) \}$. Then R is WN^{∞} , SN^{∞} and CR^{∞} .
- Let $R = \{ a \rightarrow a, a \rightarrow c(a) \}$. Then R is WN^{∞} and CR^{∞} , but not SN^{∞} .

• $SN^{\infty} \neq SN$

a
ightarrow c(a)Here, a $ightarrow c^{\omega}$ which is a normal form.

Even one collapsing rule is sufficient to violate CR^{∞} . Take $R = \{ f(x, y) \rightarrow y \}$. Then

• $SN^{\infty} \neq SN \lor WN$

 $a \rightarrow c(a)$ Here, $a \rightarrow c^{\omega}$ which is a normal form.

Even one collapsing rule is sufficient to violate CR^{∞} . Take $R = \{ f(x, y) \rightarrow y \}$. Then

- $SN^{\infty} \not\Rightarrow SN \lor WN$ $a \to c(a)$ Here, $a \to c^{\omega}$ which is a normal form.
- SN SN^{∞}

Even one collapsing rule is sufficient to violate CR^{∞} . Take $R = \{ f(x, y) \rightarrow y \}$. Then

• $SN^{\infty} \not\Rightarrow SN \lor WN$ • $a \to c(a)$ Here, $a \to c^{\omega}$ which is a normal form. • $SN \not\Rightarrow SN^{\infty}$ $I(x) \to x$ Here, I(I(I(...))) rewrites only to itself.

Even one collapsing rule is sufficient to violate CR^{∞} . Take $R = \{ f(x, y) \rightarrow y \}$. Then

• $SN^{\infty} \not\Rightarrow SN \lor WN$ $a \to c(a)$ Here, $a \to c^{\omega}$ which is a normal form. • $SN \not\Rightarrow SN^{\infty} \lor WN^{\infty}$ $I(x) \to x$ Here, $I(I(I(\ldots)))$ rewrites only to itself.

Even one collapsing rule is sufficient to violate CR^{∞} . Take $R = \{ f(x, y) \rightarrow y \}$. Then

• $SN^{\infty} \Rightarrow SN \lor WN$ $a \to c(a)$ Here, $a \to c^{\omega}$ which is a normal form. • $SN \Rightarrow SN^{\infty} \lor WN^{\infty}$ $I(x) \to x$ Here, $I(I(I(\ldots)))$ rewrites only to itself.

• CR^{∞} CR

Even one collapsing rule is sufficient to violate CR^{∞} . Take $R = \{ f(x, y) \rightarrow y \}$. Then

• $SN^{\infty} \not\Rightarrow SN \lor WN$ • $a \to c(a)$ Here, $a \to c^{\omega}$ which is a normal form. • $SN \not\Rightarrow SN^{\infty} \lor WN^{\infty}$ I(x) $\to x$ Here, I(I(I(...))) rewrites only to itself. • $CR^{\infty} \not\Rightarrow CR$ $a \to b, a \to c, b \to d(b), c \to d(c)$ Here, $\neg(b \downarrow c), but b \to d^{\omega} \leftrightarrow c$.

Even one collapsing rule is sufficient to violate CR^{∞} . Take $R = \{ f(x, y) \rightarrow y \}$. Then

• $SN^{\infty} \neq SN \lor WN$	a ightarrow c(a) Here, $a ightarrow c^{\omega}$ which is a normal form.
• $SN \Rightarrow SN^{\infty} \lor WN^{\infty}$	$I(x) \rightarrow x$ Here, $I(I(I()))$ rewrites only to itself.
• $CR^{\infty} \not\Rightarrow CR$	$a ightarrow b, \ a ightarrow c, \ b ightarrow d(b), \ c ightarrow d(c)$ Here, $\neg (b \downarrow c)$, but $b ightarrow d^{\omega} ightarrow c.$
• CR CR^{∞}	

Even one collapsing rule is sufficient to violate CR^{∞} . Take $R = \{ f(x, y) \rightarrow y \}$. Then

• $SN^{\infty} \not\Rightarrow SN \lor WN$	a ightarrow c(a) Here, $a ightarrow c^{\omega}$ which is a normal form.
• $SN \Rightarrow SN^{\infty} \lor WN^{\infty}$	$I(x) \rightarrow x$ Here, $I(I(I()))$ rewrites only to itself.
• $CR^{\infty} \Rightarrow CR$	$a ightarrow b, \ a ightarrow c, \ b ightarrow d(b), \ c ightarrow d(c)$ Here, $\neg(b \downarrow c)$, but $b ightarrow d^{\omega} ightarrow c$.
• $CR \Rightarrow CR^{\infty}$	$A(x) \to x, \ B(x) \to x$ Here, $A^{\omega} \iff (AB)^{\omega} \implies B^{\omega}.$

Even one collapsing rule is sufficient to violate CR^{∞} . Take $R = \{ f(x, y) \rightarrow y \}$. Then

• $SN^{\infty} \Rightarrow SN \lor WN$	a ightarrow c(a) Here, $a ightarrow c^{\omega}$ which is a normal form.
• $SN \Rightarrow SN^{\infty} \lor WN^{\infty}$	$I(x) \rightarrow x$ Here, $I(I(I()))$ rewrites only to itself.
• $CR^{\infty} \Rightarrow CR$	$a ightarrow b, \ a ightarrow c, \ b ightarrow d(b), \ c ightarrow d(c)$ Here, $\neg (b \downarrow c)$, but $b ightarrow d^{\omega} ightarrow c.$
• $CR \Rightarrow CR^{\infty}$	$A(x) \to x, \ B(x) \to x$ Here, $A^{\omega} \iff (AB)^{\omega} \longrightarrow B^{\omega}.$

Remark

The example $A(x) \rightarrow x$, $B(x) \rightarrow x$ shows: not every orthogonal TRSs is CR^{∞} .

• $SN^{\infty} \Rightarrow SN \lor WN$	a ightarrow c(a) Here, $a ightarrow c^{\omega}$ which is a normal form.
• $SN \not\Rightarrow SN^{\infty} \lor WN^{\infty}$	$I(x) \rightarrow x$ Here, $I(I(I()))$ rewrites only to itself.
• $CR^{\infty} \Rightarrow CR$	$a ightarrow b, \ a ightarrow c, \ b ightarrow d(b), \ c ightarrow d(c)$ Here, $ eg(b \downarrow c), \ but \ b ightarrow d^{\omega} ightarrow c.$
• $CR \Rightarrow CR^{\infty}$	$A(x) \to x, \ B(x) \to x$ Here, $A^{\omega} \iff (AB)^{\omega} \Longrightarrow B^{\omega}.$

Remark

The example $A(x) \to x$, $B(x) \to x$ shows: not every orthogonal TRSs is CR^{∞} . Even one collapsing rule is sufficient to violate CR^{∞} .

• $SN^{\infty} \Rightarrow SN \lor WN$	a ightarrow c(a) Here, $a ightarrow c^{\omega}$ which is a normal form.
• $SN \Rightarrow SN^{\infty} \lor WN^{\infty}$	$I(x) \rightarrow x$ Here, $I(I(I()))$ rewrites only to itself.
• $CR^{\infty} \Rightarrow CR$	$a ightarrow b, \ a ightarrow c, \ b ightarrow d(b), \ c ightarrow d(c)$ Here, $\neg (b \downarrow c)$, but $b ightarrow d^{\omega} ightarrow c.$
• $CR \Rightarrow CR^{\infty}$	$A(x) \to x, \ B(x) \to x$ Here, $A^{\omega} \iff (AB)^{\omega} \implies B^{\omega}.$

Remark

The example $A(x) \to x$, $B(x) \to x$ shows: not every orthogonal TRSs is CR^{∞} .

Even one collapsing rule is sufficient to violate CR^{∞} . Take $R = \{ f(x, y) \rightarrow y \}$. Then

 $f(x, f(x, f(x, \ldots))) \nleftrightarrow f(x, f(y, f(x, f(y, \ldots)))) \longrightarrow f(y, f(y, f(y, \ldots)))$

Remark (The failure of Newmann's Lemma for infinitary rewriting)

 $\mathit{WCR} \land \mathit{SN}^{\infty} \not\Rightarrow \mathit{CR}^{\infty}$

Remark (The failure of Newmann's Lemma for infinitary rewriting)

 $WCR \land SN^{\infty} \not\Rightarrow CR^{\infty}$

For example:

$$R = \{ a \rightarrow b(a), \\ a \rightarrow c(a), \\ c(b(x)) \rightarrow b(b(x)) \}$$

is WCR and SN^{∞} , but not CR^{∞} .

Results for (Weakly) Orthogonal TRSs

Theorem

Every weakly orthogonal TRS without collapsing rules is CR^{∞} .

Results for (Weakly) Orthogonal TRSs

Theorem

Every weakly orthogonal TRS without collapsing rules is CR^{∞} .

Definition

A TRS \mathcal{R} is UN^{∞} if $s \leftrightarrow \cdots \rightarrow t \Rightarrow s = t$ for all normal forms $s, t \in \mathcal{T}^{\infty}(\Sigma, \mathcal{X})$.

Results for (Weakly) Orthogonal TRSs

Theorem

Every weakly orthogonal TRS without collapsing rules is CR^{∞} .

Definition

A TRS \mathcal{R} is UN^{∞} if $s \leftrightarrow \cdots \rightarrow t \Rightarrow s = t$ for all normal forms $s, t \in \mathcal{T}^{\infty}(\Sigma, \mathcal{X})$.

Theorem

Every orthogonal TRS is UN^{∞} .

Results for (Weakly) Orthogonal TRSs

Theorem

Every weakly orthogonal TRS without collapsing rules is CR^{∞} .

Definition

A TRS \mathcal{R} is UN^{∞} if $s \leftrightarrow \cdots \rightarrow t \Rightarrow s = t$ for all normal forms $s, t \in \mathcal{T}^{\infty}(\Sigma, \mathcal{X})$.

Theorem

Every orthogonal TRS is UN^{∞} .

Example

Weakly orthogonal TRSs are not necessarily UN^{∞} :

$$S(P(x)) \to x$$
 $P(S(x)) \to x$

Then

$$S^{\omega} \nleftrightarrow S^1(P^2(S^3(P^4(\ldots)))) \twoheadrightarrow P^{\omega}$$

Compression and Parallel Moves

Theorem (Compression)

Let \mathcal{R} be an left-linear TRS. Then $s \longrightarrow t$ implies $s \rightarrow^{\leq \omega} t$.

That is, every strongly convergent reduction can be compressed to length $\leq \omega$.

Compression and Parallel Moves

Theorem (Compression)

Let \mathcal{R} be an left-linear TRS. Then $s \longrightarrow t$ implies $s \rightarrow^{\leq \omega} t$.

That is, every strongly convergent reduction can be compressed to length $\leq \omega$.

Theorem (Parallel Moves)

Let \mathcal{R} be an orthogonal TRS. Then $t_1 \notin s \longrightarrow t_2 \Rightarrow t_1 \longrightarrow \cdot \notin t_2$.

