\begin{frame}
\small
\begin{definition}
A reduction $\rho = t_0 \to t_1 \to \ldots$ is \alert{cofinal}
if for every $t_0 \to^* s$ there exists $t_n$ in $\rho$ such that $s \to^* t_n$.
\end{definition}
\medskip\pause
\begin{definition}
A strategy $\SS$ is \alert{cofinal} if every every maximal $\SS$
rewrite sequence is cofinal.
\end{definition}
\medskip\pause
\begin{theorem}
Cofinal strategies are normalizing.
\end{theorem}
\pause
\begin{proof}
Let $\SS$ be a cofinal strategy.
\pause
Let $t_0$ be a term that has a normal form $u$ ($t_0 \to^* u$).
\medskip\pause
Consider a maximal $\SS$ rewrite sequence $\rho : t_0 \to t_1 \to \ldots$ starting from $t_0$.
\medskip\pause
By cofinality there must be $t_n$ in $\rho$ such that $u \to^* t_n$.
\medskip\pause
Hence $t_n = u$ since $u$ is a normal form.
\end{proof}
\end{frame}