\begin{frame}
\small
\begin{theorem}
Properties of $\overline{\atrs}$ for orthogonal TRSs $\atrs$:
\begin{itemize}
\item $\overline{\atrs}$ is orthogonal.
\item $\overline{\atrs}$ is SN.
\item $\overline{\atrs}$ is CR.
\end{itemize}
\end{theorem}
\medskip\pause
\begin{proof}
The orthogonality of $\overline{\atrs}$ is immediate. Hence $\overline{\atrs}$ is CR.
\bigskip\pause
For SN we show that $\overline{\atrs}$ is ILPO terminating where $\overline{f} > g$ for every $f,g \in \FF$.
\smallskip\pause
Let $\ell = \overline{f}(\ell_1,\ldots,\ell_n)$ and $r \in \TT(\FF,\VV)$ with $\Var(r) \subseteq \Var{\ell}$.
\smallskip\pause
Then $\ell^* \to_{\mathit{ilpo}}^* r$ by induction on $r$:
\begin{itemize}
\pause
\item If $r \in \Var(\ell)$, then we use $\to_{\mathit{put}}$ and $\to_{\mathit{select}}$.
\pause
\item If $r = g(r_1,\ldots,r_m)$, then we use $\ell^* \to_{\mathit{copy}} g(\ell^*,\ldots,\ell^*)$.\\\pause
Moreover by the induction hypothesis $\ell^* \to_{\mathit{ilpo}}^* r_i$ for every $i$.
\end{itemize}
\vspace{-3ex}
\end{proof}
\end{frame}