\begin{frame}
\small
\begin{definition}
A critical pair $s \cp t$ is \alert{trivial} if $s = t$.
\end{definition}
\begin{definition}
A \alert{weakly orthogonal} TRS is left-linear and has only trivial critical pairs.
\end{definition}
% overlay niet echt nodig ?
%AM find overlays rather useful on this (modified) slide
% \begin{definitions}
% \begin{itemize}
% \item
% critical pair $s \cp t$ is \alert<1>{trivial} if $s = t$
% \item<2->
% \alert<2>{weakly orthogonal} TRS is left-linear and has only trivial
% critical pairs
% \item<5->
% \alert<5>{overlay} $s \alert<3>{\overlay} t$ is critical pair originating
% from overlap
% $\langle l_1 \to r_1, \alert<3>{\epsilon}, l_2 \to r_2 \rangle$
% \item<6->
% weakly orthogonal TRS is \alert<6>{almost orthogonal} if all
% critical pairs are overlays
% \end{itemize}
% \end{definitions}
\medskip
\begin{examples}<2->
\[
\GREEN{
\begin{array}{c@{\:\vee\:}c@{~}c@{~}c}
x & \m{T} & \to & \m{T} \\[.5ex]
\m{T} & x & \to & \m{T} \\[.5ex]
\m{F} & \m{F} & \to & \m{F}
\end{array}
\qquad\qquad\qquad\qquad
\onslide<3->
\begin{array}{r@{~}c@{~}l}
\m{p}(\m{s}(x)) & \to & x \\[.5ex]
\m{s}(\m{p}(x)) & \to & x
\end{array}
}
\]
\end{examples}
\end{frame}