\begin{frame}
\small
\begin{block}{}
\begin{center}
rewrite \alert<1>{sequence} $A\colon s \to^* t$
\qquad
set of positions $Q \subseteq \Pos(s)$
\end{center}
\end{block}
\smallskip
\begin{definition}[Descendants after Rewrite Sequence]
\smallskip
The descendants of $Q$ after $A$ in $t$
\[
Q \project A = \begin{cases}
Q & \text{if $A$ is empty sequence} \\
(Q \project A_1) \project A_2
& \text{If $A = A_1; A_2$ with $A_1\colon s \to u$ and
$A_2\colon u \to^* t$}
\end{cases}
\]
\end{definition}
\medskip\pause
\begin{lemma}
\makebox[35mm][l]{For left-linear TRSs:}
if $Q$ is parallel (\,$\forall\:p \neq q \in Q \colon p \parallel q$)
then so is $Q \project A$.
\end{lemma}
\pause
\begin{lemma}
\makebox[35mm][l]{For orthogonal TRSs:}
if $Q$ is set of redex positions then so is $Q \project A$.
\end{lemma}
\pause
\begin{block}{Terminology}
\smallskip
A descendant of redex is called \alert{residual}.
\smallskip
\end{block}
\end{frame}