\begin{frame}
\small
\begin{block}{}
\begin{center}
rewrite step $A\colon s \xrightarrow[\ell \to r]{p} t$
at position $p \in \Pos(s)$ \quad\quad
set of positions $Q \subseteq \Pos(s)$
\end{center}
\end{block}
\bigskip
\begin{definition}[Descendants after Rewrite Step]
\smallskip
\begin{itemize}
\item
The \alert{descendants} of $q$ after $A$ in $t$
\[
\alert{q \project A} = \begin{cases}
\{ q \} & \text{if $q < p$ or $q \parallel p$} \\
\{ p p_3 p_2 \mid r|_{p_3} = \ell|_{p_1} \} &
\text{if $q = p \ct p_1 \ct p_2$ with $p_1 \in \Pos_\VV(\ell)$} \\
\varnothing & \text{otherwise}
\end{cases}
\]
\item<2->
The descendants of $Q$ after $A$ in $t$ are
\[
\alert{Q \project A} = \bigcup_{q \in Q} q \project A
\]
\end{itemize}
\end{definition}
\bigskip
%AM something to ask during the lecture, to practice during the exercises,
% but (perhaps) not to put on slide
% \begin{block}{Question}
% What are the possibilites for `otherwise'?
% \end{block}
%AM 21.06 TODO add (abstract) picture
\end{frame}