\begin{frame}[t]
\frametitle{Case (b) and (b'): Nested redexes}
\begin{minipage}{.5\textwidth}
\includegraphics[width=.90\textwidth]{../graphics/critpairlemma}\\[3ex]
\end{minipage}
\begin{minipage}{.49\textwidth}
Assume that $s_1$ is \alert{nested below} $s_0$ in $t$:
\pause
\begin{itemize}
\item $s_0$ be position $p_0$ with rule $\ell \to r$
\item $s_1$ at position $p_1$
\end{itemize}
\pause
Then \alert{$p_1 = p_0 q q'$} where $\alert{\ell|_q = x} \in \mathcal{X}$.
\medskip\pause
Let $C = t[\Box]_{p_0}$, then for some $\sigma$:
\begin{itemize}
\item $t = C[\ell \sigma] \stackrel{s_0}{\to} C[r\sigma] = t_0$
\pause
\item $t \stackrel{s_1}{\to} t_1$ (below position $p_0q$)
\end{itemize}
\pause
Let $\tau = \sigma$, except $\tau(x) = t_1|_{p_0q}$. Then
\begin{itemize}
\item $t|_{p_0q} = \sigma(x) \to \tau(x) = t_1|_{p_0q}$
\end{itemize}
\pause
Then\vspace{-1ex}
\begin{align*}
t_0 = C[r\sigma] \to^* &C[r\tau]\\
\leftarrow &C[\ell\tau] \leftarrow^* t_1 \leftarrow C[\ell\sigma] = t
\end{align*}
\medskip
\end{minipage}
\end{frame}