\begin{frame}
\small
\begin{definitions}
\begin{itemize}
\item
An \alert{overlap} is a triple
$\langle \ell_1 \to r_1, p, \ell_2 \to r_2 \rangle$ such that \\[-.5ex]
\begin{enumerate}
\pause
\item
$\ell_1 \to r_1$ and $\ell_2 \to r_2$ are rewrite rules
\smallskip\pause
\item
$p \in \Pos_\FF(\ell_2)$ a non-variable position in $\ell_2$
\smallskip\pause
\item
$\ell_1$ and ${\ell_2}|_p$ have a common instance
\smallskip\pause
Let $\sigma$ and $\tau$ substitutions such that $\ell_1 \sigma = {\ell_2}|_p \tau$ is the mgci.\\
(w.l.o.g. $\mit{dom}(\tau) = \Var({\ell_2}|_p)$ and $\Var(({\ell_2}|_p)\tau) \cap \Var({\ell_2}[\Box]_p) = \emptyset$)
\smallskip\pause
\item
if $p = \epsilon$ then $(\ell_1 \to r_1) \;\ne\; (\ell_2 \to r_2)$
\end{enumerate}
\pause
Then we have steps
$\ell_2\tau[r_1\alert<3>{\sigma}]_p
\from
\ell_2\tau[\ell_1\alert<3>{\sigma}]_p =
\ell_2\tau \to
r_2 \tau$.
\medskip\pause
We call $\ell_2\tau[r_1\alert<3>{\sigma}]_p
\cp
r_2 \tau$ \alert{critical pair}.
\smallskip\pause
\item<5->
A critical pair $s \cp t$ is \alert{convergent} if $s \join t$.
\smallskip
\end{itemize}
\end{definitions}
\bigskip\pause
\begin{block}<6->{Critical Pair Lemma (Huet 1980)}
\smallskip
A TRS is locally confluent (WCR) \quad$\iff$\quad all critical pairs are convergent.
\end{block}
\end{frame}