\begin{frame}[t]
\vspace{-1ex}
\begin{example}
\vspace{-1em}
\begin{align*}
\minus(x,0) &\to x\\
\minus(\s(x),\s(y)) &\to \minus(x,y)\\
\quot(0,\s(y)) &\to 0\\
\quot(\s(x),\s(y)) &\to \s(\quot(\minus(x,y),\s(y)))
\end{align*}
\vspace{-3.5em}
\pause
\begin{align*}
\DP(R) = \{\;
\alert<5>{\minus_\#(\s(x),\s(y))} &\alert<5>{\to \minus_\#(x,y)}\\
\ungray{-3}{\alert<3>{\quot_\#(0,\s(y))}} &\ungray{-3}{\alert<3>{\to 0_\#}}\\
\ungray{-3}{\alert<3>{\quot_\#(\s(x),\s(y))}} &\ungray{-3}{\alert<3>{\to \s_\#(\quot(\minus(x,y),\s(y)))}}\\
\alert<5>{\quot_\#(\s(x),\s(y))} &\alert<5>{\to \quot_\#(\minus(x,y),\s(y))}\\
\alert<5>{\quot_\#(\s(x),\s(y))} &\alert<5>{\to \minus_\#(x,y)}\\
\ungray{-3}{\alert<3>{\quot_\#(\s(x),\s(y))}} &\ungray{-3}{\alert<3>{\to \s_\#(y)}}
\;\}
\end{align*}
\vspace{-1.5em}
\pause
\alt<-3>{
We use the interpretation:
\vspace{-.5em}
\begin{gather*}
\interpret{\minus_\#}(x,y) = 1 \quad
\interpret{\quot_\#}(x,y) = 1 \quad
\interpret{\minus}(x,y) = x \quad
\interpret{\s}(x) = x\\
\interpret{{\rm f}}(\vec{x}) = 0 \text{ for all other symbols ${\rm f}$}
\end{gather*}
\vspace{-2ex}
}{}
\alt<4->{
The following interpretation removes the remaining DP rules:
\vspace{-.5em}
\begin{gather*}
\interpret{\minus_\#}(x,y) = \interpret{\minus}(x,y) =
\interpret{\quot_\#}(x,y) = \interpret{\quot}(x,y) = x \\
\interpret{\s}(x) = x+1 \quad\quad
\interpret{0} = 0\\[-4.5ex]
\end{gather*}%
Thus we have proven termination.
}{}%
\end{example}
\vspace{10cm}
\end{frame}