\begin{frame}
\frametitle{Stepwise Termination Proofs}
Stepwise termination proofs with dependency pairs:
\begin{theorem}
If there exists a weakly monotone $\Sigma$-algebra s.t.
%
\begin{itemize}
\item ${T_1} \subseteq {>}$
\item ${T_2 \cup R} \subseteq {\succeq}$
\end{itemize}
Then
\vspace{-1.5ex}
\begin{align*}
\SN(T_{2,\text{top}}/R) \implies \SN((T_1 \cup T_2)_\text{top}/R)
\end{align*}
\end{theorem}
\smallskip
That is, we may remove the strictly decreasing \alert{top-rules}.
\medskip\pause
Typically, $T_1, T_2 \subseteq \DP(R)$.
Works also for other top-termination problems.
\medskip\pause
We are \alert{not} allowed to remove strictly decreasing rules in $R$!\\
For removing from $R$ we need monotonic interpretations!
\end{frame}