\begin{frame}[t]
\frametitle{Dependency Pairs, Introduction}
Let $t_0$ be a minimal and $t_0 \to_R t_1 \to_R t_2 \to_R \ldots$ an infinite rewrite sequence.
\medskip
We consider the first root rewrite step $t_i \to t_{i+1}$:
\pause
\only<2->{
\begin{center}
\includegraphics[width=.7\textwidth]{../graphics/pstricks/dp_1}
\end{center}
\vspace{-1em}
}
\begin{itemize}
\pause
\item The term $t_{i+1}$ contains a minimal, non-terminating subterm $s$.
\pause
\item The root of $s$ lies in the pattern of $r$.
\end{itemize}
\pause
Hence there exists a non-variable subterm $r'$ of $r$ such that $s = r' \sigma$.
\pause\medskip
Idea: \alert{add a rule $\ell \to r'$ then $t_i \to s$.}
\end{frame}