\begin{frame}[t]
\frametitle{Dependency Pairs, Introduction}
\alert<1>{Assume $R$ is non-terminating.} \pause
There exists a minimal, non-terminating term $t_0$.
$$t_0 \to_R t_1 \to_R t_2 \to_R \ldots$$
\pause
\vspace{-1.5em}
\begin{block}{}
At some point there must be a root step $t_i \to t_{i+1}$.
\end{block}
\pause
\begin{proof}
Assume all steps would be below the root. Then:
\begin{itemize}
\item all $t_i$ are minimal,
\item all rewrite steps are in terminating subterms.
\end{itemize}
\end{proof}
\pause
\bigskip
Notation: we use $\stackrel{\text{\tiny top}}{\longrightarrow}_R$
to denote root rewrite steps.
\end{frame}