\begin{frame}
Steps below the root do not change minimality:
\pause
\begin{lemma}
Let $t$ be minimal and $t \to s$ a rewrite step below the root.
Then $s$ is minimal.
\end{lemma}
\pause
\begin{proof}
We have $t = f(t_1,\ldots,t_n)$ and $s = f(s_1,\ldots,s_n)$ and $i \in \nat$ such that:
\begin{itemize}
\item $t_i \to s_i$, and
\item $t_j = s_j$ for all $j \ne i$.
\end{itemize}
\pause\medskip
Then since $t$ is minimal, it follows that all $t_k$ are terminating.
\pause\medskip
Since $t_k \to^* s_k$, we obtain $s_k$ is terminating for all $1 \le k \le n$.
\pause\medskip
Hence $s$ is minimal.
\end{proof}
\end{frame}