183/365
\begin{frame}
  \frametitle{A non-simply terminating TRS: $f(f(x)) \to f(g(f(x)))$}
  
  \begin{example}[$S = \{f(f(x)) \to f(g(f(x)))\}$]
  We choose the $\Sigma$-algebra $(\nat^2,\interpret{\cdot})$ with:
  \begin{align*}
  {\rm [f]}(\vec{x}) &=
    \left(\begin{array}{cc}
    \emph{1} & 1\\
    0 & 0\\
    \end{array} \right) \cdot \vec{x}
    +
    \left(\begin{array}{c}
    0\\
    1\\
    \end{array} \right)
  &
  {\rm [g]}(\vec{x}) &=
    \left(\begin{array}{cc}
    \emph{1} & 0\\
    0 & 0\\
    \end{array} \right) \cdot \vec{x}
    +
    \left(\begin{array}{c}
    0\\
    0\\
    \end{array} \right)
  \end{align*}
  \vspace{-0.5em}
  \pause
    
  where $>$ on $\nat^2$ is defined as follows:
  \begin{align*}
    \left(\begin{array}{c}
    x_1\\
    x_2\\
    \end{array} \right)
    >
    \left(\begin{array}{c}
    y_1\\
    y_2\\
    \end{array} \right)
    \Longleftrightarrow
    x_1 > y_1 \text{ and } x_2 \ge y_2
  \end{align*}
  \vspace{-0.5em}
  \pause
  
  Let $\alpha{:}\ {\cal X} \to A$ be arbitrary; write $\vec{x} = \alpha(x)$.
  We obtain
  \begin{align*}
  [f(f(x))] = 
  \left(\begin{array}{cc}
  1 & 1\\
  0 & 0\\
  \end{array} \right) \cdot \vec{x}
  +
  \left(\begin{array}{c}
  \emph{1}\\
  1\\
  \end{array} \right)
  &> 
  \left(\begin{array}{cc}
  1 & 1\\
  0 & 0\\
  \end{array} \right) \cdot \vec{x}
  +
  \left(\begin{array}{c}
  \emph{0}\\
  1\\
  \end{array} \right)
  = [f(g(f(x)))]
  \end{align*}
  \vspace{-0.5em}
  \pause
  
  Hence $S$ is terminating.
  \end{example}
\end{frame}