80/365
\begin{frame}
  
  \begin{lemma}
    Let $\AA$ well-founded monotone $\Sigma$-algebra.
    Then $>_\AA$ is closed under substitutions.
  \end{lemma}
  \pause
  
  \begin{proof}
    Let $s,t \in \TTlong$ such that $t >_\AA s$.\pause\smallskip
    
    Let $\sigma$ be a substitution. We show $t\sigma >_\AA s\sigma$.\pause\smallskip
    
    That is: $[t\sigma,\alpha] > [s\sigma,\alpha]$ for every $\alpha : \VV \to A$.\pause\smallskip
    
    Define $\beta : \VV \to A$ by $\beta(x) = \interpret{\sigma(x),\alpha}$.
    \pause
    Claim: $\interpret{u\sigma,\alpha} = \interpret{u,\beta}$ for all $u$.
    \begin{itemize}
      \item<7->
        \pause
        Proof of the claim by induction over the term structure of $u$:
        \vspace{-.6em}
        \begin{align*}
          \onslide<8-> \interpret{x\sigma,\alpha} &\onslide<8->= \interpret{\sigma(x),\alpha} = \interpret{x,\beta}\\
          \onslide<9-> 
          \interpret{f(t_1,\ldots,t_n)\sigma,\alpha} 
            &\onslide<10-> = \interpret{f}(\interpret{t_1\sigma,\alpha},\ldots,\interpret{t_n\sigma,\alpha})\\
            &\onslide<11-> \stackrel{\text{IH}}{=} \interpret{f}(\interpret{t_1,\beta},\ldots,\interpret{t_n,\beta})\\
            &\onslide<12-> = \interpret{f(t_1,\ldots,t_n),\beta}
        \end{align*}
    \end{itemize}
    \vspace{-1.5em}
    \onslide<13->
    Hence $[t\sigma,\alpha] = [t,\beta] > [s,\beta] = [s\sigma,\alpha]$.
  \end{proof}
\end{frame}