Overview

® | ecture 1: Introduction, Abstract Rewriting
® |ecture 2: Term Rewriting

® |ecture 3: Combinatory Logic

® Lecture 4: Termination

® |ecture 5: Matching, Unification

® |ecture 6: Equational Reasoning, Completion
® Lecture 7: Confluence

® Lecture 8: Modularity

® |ecture 9: Strategies

® |ecture 10: Decidability

® [ecture 11: Infinitary Rewriting

Term Rewriting Systems - Lecture 3 1/22

@ Overview

@ Combinatory Logic

Combinatory Logic J

Combinatory Logic

Combinatory Logic (CL)

Ap(Ap(Ap(S,x),y),z) — Ap(Ap(x,z),Ap(y, 2))
Ap(Ap(K,x),y) - X
Ap(1, x) — X
CL in infix notation
(((5-x)-y)-2) = ((x-2)-(y-2))
((K-x)-y) - X
(I x) - X

CL in standard notation

Sxyz — xz(yz)
Kxy — x
Ix — X

Term Rewriting Systems - Lecture 3 4/22

Combinatory Logic

Association to the Left

Association to the Left
A term tytots ... t, restores to ((...((t1t2)t3)...)tn) J

e xz(yz) restores to (xz)(yz)
not to x(z(yz))

e Kxy restores to (Kx)y
not K(xy)

® Not all bracket pairs can be dropped:
xzyz is when restored ((xz)y)z
quite different from xz(yz)

e Note that the term Six does not contain a redex Ix.

Term Rewriting Systems - Lecture 3 5/22

Combinatory Logic

A Famous Term

® A famous term with a famous reduction cycle:

SH(SIY — 1(SI)(I(SI1))
— SI(I(SII))
— SI(SIN)

e let D=5Il.
Given an arbitrary argument, D copies it and applies it to itself:

Dx = Slix — Ix(Ix)
— x(Ix)
— XX

Term Rewriting Systems - Lecture 3 6/22

Combinatory Logic

Combinators

e Let B=S(KS)K.
We have

Bxyz = S(KS)Kxyz — KSx(Kx)yz

— S(Kx)yz
— Kxz(yz)
— x(yz)
e Let C = S(BBS)(KK).
We have
Cxyz —* xzy

e Exercise: find a combinator F such that Fxy = yx.

Term Rewriting Systems - Lecture 3 7/22

Combinatory Logic

Combinatorial Completeness

Lemma (Combinatorial Completeness)

Given CL-term t, one can find a CL-term F such that

Fxi...x, =%t

This F can be constructed such that the the variables x, . .., x, do not occur in F.

Then closure under substitutions yields:

Lemma
Then F ty ...ty =" t[x1 — t1,...%, — ty] for arbitrary terms ti, ..., t,. J

Term Rewriting Systems - Lecture 3 8/22

Combinatory Logic

Towards a Proof of Combinatorial Completeness

Definition (Abstraction of x)

[x]t = Kt, if t is a constant or a variable other than x
[X]x =1
[xJet" = S([x]e)([x]t")-

For [x1]([x2](. .. ([xa]t) - -.)) we will write [x1x2...Xp|t

Example
Let t = [y]yx and t’ = [xy]yx. Then
t=S(lyly)(lylx) = SI(Kx),

¢ =[xt = [<I(SI(Kx)) = S(BI(S)([x)(Kx))
— S(K(SD)(S(KIK)([xIx)) = S(K(SH)(S(KK)!).

Term Rewriting Systems - Lecture 3

9/22

Combinatory Logic

Towards a Proof of Combinatorial Completeness

Lemma (Properties of)
(X]t)x =* t

The variable x does not occur in the CL-term denoted by [x]t

Proof.

Induction on t:

base case ([x]x)x = Ix = x
([x]y)x = Kyx — y (the same if t is a constant)
induction IH: ([x]t)x —* t and ([x]t')x —=* ¢/

(et)x = S()(IX]E)x = (XIe)x(([x]t)x)

—* t(([x]t")x) =" tt’

Term Rewriting Systems - Lecture 3 10/22

Combinatory Logic

Simulation of beta reduction

Lemma
We can use abstraction to simulate [3-reduction of A-calculus:

([x]t)t" =" t[x == t']

Proof.

We have ([x]t)x —* t.
Substitute t’ for x in this reduction. [|

Term Rewriting Systems - Lecture 3 11/22

Combinatory Logic

Proof of Combinatorial Completeness

Combinatorial Completeness
Given a CL-term t, find a CL-term F such that Fx;...x, —* t

Proof.
Let F = [xixp ... x|t

By former proposition and induction on n:

Fxi...xp=(Pallxe. - xa]t)x- . x0o =% (2. Xp]t)x2. .. Xy =7 £

Term Rewriting Systems - Lecture 3

12/22

Combinatory Logic

Fixed Points

Let F be an arbitrary CL-term. Consider:

Pr = D(BFD) |

Pr = D(BFD) —* BFD(BFD) —* F(D(BFD)) = FPr

Hence FPr ++* Pg. Looks better if we write = for <+*:
FPr = Pg¢

Pr is a fixed point for F

Define the fixed-point combinator P = [x]D(BxD). Then F(PF) = PF for any F.)

Term Rewriting Systems - Lecture 3 13/22

Combinatory Logic

Fixed-point Combinators

Definition
A fixed-point combinator Y is any closed CL-term for which there is a conversion

Yx <™ x(Yx)

Many fixed-point combinators exist in CL.

The most famous one is Curry's: paradoxical combinator

Yc = SSI(SB(KD))

Term Rewriting Systems - Lecture 3 14/22

Combinatory Logic

Implicit function definition

Given a CL-term t, find F such that

Fxi...xn <" tly = F]

We take:
e t' =[y][x1...xn]t, and
e F = Yt for some fixed-point combinator Y.

Then:
Fxi...xp=tFxi...xs =t'yxq...xply := F] =" ty :== F]

Application: recursion.

Term Rewriting Systems - Lecture 3 15/22

Combinatory Logic

Currying

Example
Currying A(x, S(y)) gives A x (Sy) J

® One binary function symbol Ap and for the rest only constants.

Definition
For each TRS (X, R) we define a curried version (X, R)“" = (X, R").

R<" has rules cur(t) — cur(s) for t — s in R, where:

cur(x) = x
cur(F(ty,...,t,)) = Feur(ty) ... cur(t,)

Term Rewriting Systems - Lecture 3 16/22

Combinatory Logic

Church Booleans

Church encoding of boolean values true and false:

true = K true xy —* x
false = KI false xy ="y
Then we can define:
or = SII or xy = (Ix)(Ix)y = xxy

or truey —™ true true y —* true
or false y —™ false false y —* y

Exercise: define and and not.

If x then y else z:

if =1 if trueyz —trueyz ="y
if falseyz — falseyz —* z

Term Rewriting Systems - Lecture 3 17/22

Combinatory Logic

Church Pairs

Church encoding of pairs: pair = Ax. Ay. Af.fxy. In CL:

pair = [xyf] f x y
fst = [p] p K
snd = [p] p (KI)

We have:

pairst=[xyf| f xy =" [f]fst
fst (pairst) =" ([pl p K) ([f] Fst) =" ([flfst) K =" Kst—"s
snd (pairs t) =" ([p] p (KD)) ([f1fst) =" ([f] f st)(KI) =" Kl st ="t
Exercise:
e compute [xyf]fxy, [plpK, and [p]p (KI).

® devise an encoding of triples

Term Rewriting Systems - Lecture 3 18/22

Combinatory Logic

Church Numerals

Church encoding of natural numbers: 7 = Af. Ax. f"(x). In CL:

0=KI
n+1=([nX]f(nfx))7i~S(S(KS)(S(KK)I)n

0fx—*x n+1fx=35(S(KS)(S(KK)I))nf x
s S(KS)(S(KK)I) f (7 f) x
— KSF(S(KK)I f) (A f) x
s S(S(KK)IF) (7 F) x
s S(KKF(I £)) (7 F) x
= S(K(F)) (7 F) x
— S(K f) (A f)x
s K (7 f %)
— (A f x)

—* £

Term Rewriting Systems - Lecture 3

19/22

Combinatory Logic

Computation with Church Numerals

plus=[mnfx] mf(nfx)

succ=[nfx] f(nfx)

isZero = [n] n (K false) true

pred =[nfx] n([gh] h(gf)) (Kx) !

Term Rewriting Systems - Lecture 3 20/22

Combinatory Logic

Computable Functions

Computable functions ~ everything a computer with infinite memory can compute. |

The class of computable functions can be defined using different models:

® Turing machines

Lambda calculus

Post machines

Register machines

® i-recursive functions

Term Rewriting Systems - Lecture 3 21/22

Combinatory Logic

Computable Functions in Combinatory Logic

The class of p-recursive (found by Kleene) functions is build from:

® zero: 0 in CL: K/
e successor. S(n) = n+1 in CL: [nfx] f(nfx)
e projection functions: Mi(ny,...,nk) = n; in CL: pair, fst,snd,...

e composition: f(xi,...,xp) = g(h(X),..., hm(X))
in CL: [X]g(hy X, ..., hy X)

e primitive recursion: f(0,X) = g(X)
f($(n), X) = h(f(n,x), n,X)
in CL: implicit definition f n X = isZero n (g X) (h (f (pred n) X) n X)

e unbounded search: pu.[f(u,X) = 0] is the least u such that f(u,x) =0
in CL: implicit definition u u f X = isZero (f u X) u (p (succ u) f X)

Every computable function can be computed in combinatory logic.)

Term Rewriting Systems - Lecture 3 22/22

