
Overview

• Lecture 1: Introduction, Abstract Rewriting

• Lecture 2: Term Rewriting

• Lecture 3: Combinatory Logic

• Lecture 4: Termination

• Lecture 5: Matching, Unification

• Lecture 6: Equational Reasoning, Completion

• Lecture 7: Confluence

• Lecture 8: Modularity

• Lecture 9: Strategies

• Lecture 10: Decidability

• Lecture 11: Infinitary Rewriting

Term Rewriting Systems - Lecture 3 1/22



Overview

Outline

Overview

Combinatory Logic

Term Rewriting Systems - Lecture 3 2/22



Combinatory Logic

Combinatory Logic

Term Rewriting Systems - Lecture 3 3/22



Combinatory Logic

Combinatory Logic (CL)

Ap(Ap(Ap(S , x), y), z) → Ap(Ap(x , z),Ap(y , z))
Ap(Ap(K , x), y) → x
Ap(I , x) → x

CL in infix notation

(((S · x) · y) · z) → ((x · z) · (y · z))
((K · x) · y) → x
(I · x) → x

CL in standard notation

Sxyz → xz(yz)
Kxy → x
Ix → x

Term Rewriting Systems - Lecture 3 4/22



Combinatory Logic

Association to the Left

Association to the Left

A term t1t2t3 . . . tn restores to ((. . . ((t1t2)t3) . . .)tn)

• xz(yz) restores to (xz)(yz)
not to x(z(yz))

• Kxy restores to (Kx)y
not K (xy)

• Not all bracket pairs can be dropped:
xzyz is when restored ((xz)y)z
quite different from xz(yz)

• Note that the term SIx does not contain a redex Ix .

Term Rewriting Systems - Lecture 3 5/22



Combinatory Logic

A Famous Term

• A famous term with a famous reduction cycle:

SII (SII )→ I (SII )(I (SII ))

→ SII (I (SII ))

→ SII (SII )

• Let D = SII .

Given an arbitrary argument, D copies it and applies it to itself:

Dx = SIIx → Ix(Ix)

→ x(Ix)

→ xx

Term Rewriting Systems - Lecture 3 6/22



Combinatory Logic

Combinators

• Let B = S(KS)K .

We have

Bxyz = S(KS)Kxyz → KSx(Kx)yz

→ S(Kx)yz

→ Kxz(yz)

→ x(yz)

• Let C = S(BBS)(KK ).

We have

Cxyz →∗ xzy

• Exercise: find a combinator F such that Fxy = yx .

Term Rewriting Systems - Lecture 3 7/22



Combinatory Logic

Combinatorial Completeness

Lemma (Combinatorial Completeness)

Given CL-term t, one can find a CL-term F such that

Fx1 . . . xn →∗ t

This F can be constructed such that the the variables x1, . . . , xn do not occur in F .

Then closure under substitutions yields:

Lemma

Then F t1 . . . tn →∗ t[x1 7→ t1, . . . xn 7→ tn] for arbitrary terms t1, . . . , tn.

Term Rewriting Systems - Lecture 3 8/22



Combinatory Logic

Towards a Proof of Combinatorial Completeness

Definition (Abstraction of x)

1 [x ]t = Kt, if t is a constant or a variable other than x

2 [x ]x = I

3 [x ]tt ′ = S([x ]t)([x ]t ′).

For [x1]([x2](. . . ([xn]t) . . .)) we will write [x1x2 . . . xn]t

Example

Let t = [y ]yx and t ′ = [xy ]yx . Then

1 t = S([y ]y)([y ]x) = SI (Kx),

2 t ′ = [x ]t = [x ](SI (Kx)) = S([x ](SI ))([x ](Kx))
= S(K (SI ))(S([x ]K )([x ]x)) = S(K (SI ))(S(KK )I ).

Term Rewriting Systems - Lecture 3 9/22



Combinatory Logic

Towards a Proof of Combinatorial Completeness

Lemma (Properties of )

1 ([x ]t)x →∗ t

2 The variable x does not occur in the CL-term denoted by [x ]t

Proof.
Induction on t:

base case ([x ]x)x = Ix → x

([x ]y)x = Kyx → y (the same if t is a constant)

induction IH: ([x ]t)x →∗ t and ([x ]t ′)x →∗ t ′

([x ]tt ′)x = S([x ]t)([x ]t ′)x → ([x ]t)x(([x ]t ′)x)

→∗ t(([x ]t ′)x)→∗ tt ′

Term Rewriting Systems - Lecture 3 10/22



Combinatory Logic

Simulation of beta reduction

Lemma
We can use abstraction to simulate β-reduction of λ-calculus:

([x ]t)t ′ →∗ t[x := t ′]

Proof.

We have ([x ]t)x →∗ t.
Substitute t ′ for x in this reduction.

Term Rewriting Systems - Lecture 3 11/22



Combinatory Logic

Proof of Combinatorial Completeness

Combinatorial Completeness

Given a CL-term t, find a CL-term F such that Fx1 . . . xn →∗ t

Proof.

Let F = [x1x2 . . . xn]t

By former proposition and induction on n:

Fx1 . . . xn = ([x1][x2 . . . xn]t)x1 . . . xn →∗ ([x2 . . . xn]t)x2 . . . xn →∗ t

Term Rewriting Systems - Lecture 3 12/22



Combinatory Logic

Fixed Points

Let F be an arbitrary CL-term. Consider:

PF = D(BFD)

PF = D(BFD)→∗ BFD(BFD)→∗ F (D(BFD)) = FPF

Hence FPF ↔∗ PF . Looks better if we write = for ↔∗:

FPF = PF

PF is a fixed point for F

Define the fixed-point combinator P = [x ]D(BxD). Then F (PF ) = PF for any F .

Term Rewriting Systems - Lecture 3 13/22



Combinatory Logic

Fixed-point Combinators

Definition
A fixed-point combinator Y is any closed CL-term for which there is a conversion

Yx ↔∗ x(Yx)

Many fixed-point combinators exist in CL.

The most famous one is Curry’s: paradoxical combinator

YC = SSI (SB(KD))

Term Rewriting Systems - Lecture 3 14/22



Combinatory Logic

Implicit function definition

Given a CL-term t, find F such that

Fx1 . . . xn ↔∗ t[y := F ]

We take:

• t ′ = [y ][x1 . . . xn]t, and

• F = Yt ′ for some fixed-point combinator Y .

Then:
Fx1 . . . xn = t ′Fx1 . . . xn = t ′yx1 . . . xn[y := F ]→∗ t[y := F ]

Application: recursion.

Term Rewriting Systems - Lecture 3 15/22



Combinatory Logic

Currying

Example

Currying A(x ,S(y)) gives A x (Sy)

• One binary function symbol Ap and for the rest only constants.

Definition

For each TRS (Σ,R) we define a curried version (Σ,R)cur = (Σcur , Rcur ).

Rcur has rules cur(t)→ cur(s) for t → s in R, where:

cur(x) = x
cur(F (t1, . . . , tn)) = F cur(t1) . . . cur(tn)

Term Rewriting Systems - Lecture 3 16/22



Combinatory Logic

Church Booleans

Church encoding of boolean values true and false:

true = K true x y →∗ x
false = KI false x y →∗ y

Then we can define:

or = SII or x y → (Ix)(Ix)y →∗ xxy
or true y →∗ true true y →∗ true

or false y →∗ false false y →∗ y

Exercise: define and and not.

If x then y else z :

if = I if true y z → true y z →∗ y
if false y z → false y z →∗ z

Term Rewriting Systems - Lecture 3 17/22



Combinatory Logic

Church Pairs

Church encoding of pairs: pair = λx . λy . λf .fxy . In CL:

pair = [xyf ] f x y

fst = [p] p K

snd = [p] p (KI )

We have:

pair s t = [xyf ] f x y →∗ [f ] f s t

fst (pair s t)→∗ ([p] p K ) ([f ] f s t)→∗ ([f ] f s t)K →∗ K s t →∗ s
snd (pair s t)→∗ ([p] p (KI )) ([f ] f s t)→∗ ([f ] f s t)(KI )→∗ KI s t →∗ t

Exercise:

• compute [xyf ] f x y , [p] p K , and [p] p (KI ).

• devise an encoding of triples

Term Rewriting Systems - Lecture 3 18/22



Combinatory Logic

Church Numerals

Church encoding of natural numbers: n = λf . λx . f n(x). In CL:

0 = KI

n + 1 = ([nfx ] f (n f x)) n ≈ S (S(KS)(S(KK )I )) n

0 f x →∗ x n + 1 f x = S (S(KS)(S(KK )I )) n f x

→ S(KS)(S(KK )I ) f (n f ) x

→ KSf (S(KK )I f ) (n f ) x

→ S(S(KK )If ) (n f ) x

→ S(KKf (I f )) (n f ) x

→ S(K (I f )) (n f ) x

→ S(K f ) (n f ) x

→ Kfx (n f x)

→ f (n f x)

→∗ f n+1(x)
Term Rewriting Systems - Lecture 3 19/22



Combinatory Logic

Computation with Church Numerals

• plus = [mn f x ] m f (n f x)

• succ = [n f x ] f (n f x)

• isZero = [n] n (K false) true

• pred = [n f x ] n ([g h] h (g f )) (Kx) I

• . . .

Term Rewriting Systems - Lecture 3 20/22



Combinatory Logic

Computable Functions

Computable functions ≈ everything a computer with infinite memory can compute.

The class of computable functions can be defined using different models:

• Turing machines

• Lambda calculus

• Post machines

• Register machines

• µ-recursive functions

Term Rewriting Systems - Lecture 3 21/22



Combinatory Logic

Computable Functions in Combinatory Logic

The class of µ-recursive (found by Kleene) functions is build from:

• zero: 0 in CL: KI

• successor: S(n) = n+1 in CL: [n f x ] f (n f x)

• projection functions: Πi
k(n1, . . . , nk) = ni in CL: pair, fst, snd, . . .

• composition: f (x1, . . . , xn) = g(h1(~x), . . . , hm(~x))

in CL: [~x ]g(h1 ~x , . . . , hm ~x)

• primitive recursion: f (0, ~x) = g(~x)
f (S(n), ~x) = h(f (n, ~x), n, ~x)

in CL: implicit definition f n ~x = isZero n (g ~x) (h (f (pred n) ~x) n ~x)

• unbounded search: µu.[f (u, ~x) = 0] is the least u such that f (u, ~x) = 0
in CL: implicit definition µ u f ~x = isZero (f u ~x) u (µ (succ u) f ~x)

Every computable function can be computed in combinatory logic.

Term Rewriting Systems - Lecture 3 22/22


