
Term Rewriting Systems

Jörg Endrullis

Vrije Universiteit Amsterdam
The Netherlands

Overview

• Lecture 1: Introduction, Abstract Rewriting

• Lecture 2: Term Rewriting

• Lecture 3: Combinatory Logic

• Lecture 4: Termination

• Lecture 5: Matching, Unification

• Lecture 6: Equational Reasoning, Completion

• Lecture 7: Confluence

• Lecture 8: Modularity

• Lecture 9: Strategies

• Lecture 10: Decidability

• Lecture 11: Infinitary Rewriting

Overview

Outline

Overview

Examples

Abstract Rewrite Systems

Newman’s Lemma

Properties of Elements

ARSs with Multiple Relations

Examples

Examples

Examples

A colony of chameleons includes 20 red, 18 blue, and 16
green individuals. Whenever two chameleons of different
colors meet, each changes to the third color. Some time
passes during which no chameleons are born or die nor do
any enter or leave the colony. Is it possible that at the end
of this period, all 54 chameleons are the same color?

→ →

→ →

→ →

Examples

A team of genetic engineers decides to create cows that produce cola instead of
milk. To that end they have to transform the DNA of the milk gene

TAGCTAGCTAGCT

in every fertilized egg into the cola gene

CTGACTGACT

Techniques exist to perform the following DNA substitutions

TCAT↔ T GAG↔ AG CTC↔ TC AGTA↔ A TAT↔ CT

Recently it has been discovered that the mad cow disease is caused by a retrovirus
with the following DNA sequence

CTGCTACTGACT

What now, if accidentally cows with this virus are created? According to the
engineers there is little risk because this never happened in their experiments, but
various action groups demand absolute assurances.

Examples

Example (Addition on Natural Numbers in Unary Notation)

signature 0 (constants) s (unary) + (binary, infix)

terms s(s(0)) s(0) + s(s(0)) s(x) + y

rewrite rules 0 + y → y

s(x) + y → s(x + y)

rewriting s(0) + s(s(0)) → s(0 + s(s(0))) x 7→ 0 y 7→ s(s(0))

→ s(s(s(0)))

Examples

Example (Group Theory)

signature e (constant) − (unary, postfix) · (binary, infix)

equations e · x ≈ x x− · x ≈ e (x · y) · z ≈ x · (y · z) E

theorems e− ≈E e (x · y)− ≈E y− · x−

rewrite rules e · x → x x · e → x
x− · x → e x · x− → e

(x · y) · z → x · (y · z) x−− → x
e− → e (x · y)− → y− · x−

x− · (x · y) → y x · (x− · y) → y

R

➀ s ≈ t is valid in E (s ≈E t) if and only if s and t have same R-normal form

➁ R admits no infinite computations

➀ & ➁ =⇒ E has decidable validity problem

Examples

Example (Combinatory Logic)

signature S K I (constants) · (application, binary, infix)

terms S ((K · I) · I) · S (x · z) · (y · z)

rewrite rules I · x → x

(K · x) · y → x

((S · x) · y) · z → (x · z) · (y · z)

rewriting ((S · K) · K) · x → (K · x) · (K · x)
→ x

inventor Moses Schönfinkel (1924)

http://en.wikipedia.org/wiki/Moses_Schoenfinkel

Examples

Example (Lambda Calculus)

signature λ (binds variables) · (application, binary, infix)

terms M ::= x | (λx .M) | (M ·M)

α conversion λx . x · y =α λz . z · y

β reduction (λx .M) · N →β M[x := N]

replace free occurrences of x in M by N

rewriting (λx . x · x) · (λx . x · x) → (λx . x · x) · (λx . x · x)

inventor Alonzo Church (1936)

http://en.wikipedia.org/wiki/Alonzo_Church

Examples

Motivation

Term rewriting is used in:

• functional programming (higher order term rewriting)

• model checking (e.g. mCRL)

• compiler construction (graph rewriting)

• computer algebra systems (e.g. Mathematica, Wolfram Alpha)

• proof assistants / automated theorem provers

• deciding equality in equational systems (axiom systems)

• abstract model of computation

• . . .

Abstract Rewrite Systems

Outline

Overview

Examples

Abstract Rewrite Systems
Definitions
Properties

Newman’s Lemma

Properties of Elements

ARSs with Multiple Relations

Abstract Rewrite Systems

Abstract Rewrite Systems

Abstract Rewrite Systems

Motivation

concrete rewrite formalisms

• string rewriting

• term rewriting

• graph rewriting

• λ-calculus

• interaction nets

• · · ·

abstract rewriting

• no structure on objects that are rewritten

• uniform presentation of properties and proofs

Abstract Rewrite Systems Definitions

Definitions

• abstract rewrite system (ARS) is set A equipped with binary relation →

a b c d

e f

g

ARS A = ⟨A,→⟩
• A = {a, b, c, d, e, f, g}

• → =

{
(a, e), (b, a), (b, c), (c, d), (c, f)

(e, b), (e, g), (f, e), (f, g)

}
• rewrite sequence

• finite a→ e→ b→

rewrite step

c→ f length 4 a→∗ f

• empty a length 0 a→∗ a

• infinite a→ e→ b→ a→ e→ b→ · · · length ω

The length of a rewrite sequence is the number of rewrite steps.
We write x →∗ y if x rewrites to y in 0 or more steps.

Abstract Rewrite Systems Definitions

Definition (Derived Relations of →)

• ← or →−1 inverse of →
• →= reflexive closure of →
• →+ transitive closure of →
• →∗ or ↠ transitive and reflexive closure of →
• ∗← or ↞ inverse of →∗ (transitive and reflexive closure of ←)

• ↔ symmetric closure of →, that is, ↔ =→∪←
• ↔∗ conversion (equivalence relation generated by →)

• ↓ joinability ↓ =→∗ · ∗←
• ↑ meetability ↑ = ∗← · →∗

a relation R is • reflexive if a R a for all a ∈ A,

• transitive if a R c whenenver a R b and b R c ,

• symmetric if a R b whenenver b R a.

Abstract Rewrite Systems Definitions

Terminology

• if x →∗ y then x rewrites to y and y is reduct of x

• if x →∗ z ∗← y then z is common reduct of x and y

• if x ↔∗ y then x and y are convertible

Example

a b c d

e f

g

h

• a→∗ f

• e ↓ f f ↓ h not g ↓ h
• g↔∗ h

Abstract Rewrite Systems Definitions

Definition (Normal Forms)

• normal form is element x such that x ̸→ y for all y

• NF(A) denotes set of normal forms of ARS A
• x →! y if x →∗ y for normal form y (x has normal form y)

Example

a b c d

e f

g

ARS A = ⟨A,→⟩
• d is normal form

• NF(A) = {d, g}
• b→! g

Abstract Rewrite Systems Properties

Outline

Overview

Examples

Abstract Rewrite Systems
Definitions
Properties

Newman’s Lemma

Properties of Elements

ARSs with Multiple Relations

Abstract Rewrite Systems Properties

Definitions

• SN strong normalization or termination

• no infinite rewrite sequences

• WN weak normalization

• every element has (rewrites to) at least one normal form

• ∀a ∃b a→! b

Abstract Rewrite Systems Properties

Lemmata

1 SN =⇒ WN

2 SN ⇐=× WN a b

3 CR =⇒ NF =⇒ UN =⇒ UN→

4 UN ⇐=× UN→ a
b

c
d

e

5 NF ⇐=× UN a b c

6 CR ⇐=× NF a b c

7 CR ⇐⇒ ↔∗ ⊆ ↓ ⇐⇒ ↔∗ = ↓ ⇐⇒ ← · →∗ ⊆ ↓

8 WN & UN→ =⇒ CR

9 CR =⇒ WCR

10 CR ⇐=× WCR a b c d

11 SN & WCR =⇒ CR Newman’s Lemma

Abstract Rewrite Systems Properties

Definitions

• NF normal form property

• if an element a is convertible with a normal form b, then a rewrites to b

• ∀a, b if a↔∗ b and b is a normal form then a→∗ b

• UN unique normal forms

• convertible normal forms are equal

• ∀a, b if a↔∗ b and a, b are normal forms then a = b

• UN→ unique normal forms with respect to reduction

• no element has more than one normal form

• ∀a, b, c if a→! b and a→! c then b = c

• !← · →! ⊆ =

Abstract Rewrite Systems Properties

Lemmata

1 SN =⇒ WN

2 SN ⇐=× WN a b

3 CR =⇒ NF =⇒ UN =⇒ UN→

4 UN ⇐=× UN→ a
b

c
d

e

5 NF ⇐=× UN a b c

6 CR ⇐=× NF a b c

7 CR ⇐⇒ ↔∗ ⊆ ↓ ⇐⇒ ↔∗ = ↓ ⇐⇒ ← · →∗ ⊆ ↓

8 WN & UN→ =⇒ CR

9 CR =⇒ WCR

10 CR ⇐=× WCR a b c d

11 SN & WCR =⇒ CR Newman’s Lemma

Abstract Rewrite Systems Properties

Definition

• CR confluence or Church-Rosser property

• ↑ ⊆ ↓
• a

b c

d

∀a, b, c

∃d

in diagrams: ↠ for →∗

• ∀a, b, c . a→∗ b ∧ a→∗ c ⇒ ∃d . b →∗ d ∧ c →∗ d

Abstract Rewrite Systems Properties

Lemma (An Equivalent Formulation of Confluence)

Confluence ↑ ⊆ ↓ is equivalent to:
• ↔∗ ⊆ ↓

•

a

•
•
•

•
•

b

c

∀a, b

∃c

• ∀a, b. a↔∗ b ⇒ ∃c . a→∗ c ∧ b →∗ c

Abstract Rewrite Systems Properties

Lemma
↑ ⊆ ↓ ⇐⇒ ↔∗ ⊆ ↓

First proof: diagram tiling.

⇐ Assume ↔∗ ⊆ ↓. We have ↑ ⊆ ↔∗ ⊆ ↓. Hence ↑ ⊆ ↓.

⇒ Assume ↑ ⊆ ↓. We show ↔∗ ⊆ ↓. Therefore let a, b ∈ A such that a↔∗ b.
Then a (←∗ · →∗)∗ b since ↔ ⊆ ←∗ · →∗. Hence:

a

•
•
•

•
•

b

•

•
c

• we stepwise replace
peaks e ∗← d →∗ f
by valleys e →∗ · ∗← f

• after each step one peak less

• hence finally no peaks left
=⇒ a ↓ b

Abstract Rewrite Systems Properties

Induction

Lemma (Induction)

To prove that a statement P(n) holds for all n ∈ N do:

1 The base case:
show that the statement holds for n = 0.

2 The inductive step:
show for all n that if the P(n) holds, then also P(n + 1) holds.

Example

Wikipedia

• Base case: proof that the first domino falls

• Induction step: proof that if the n-th domino
falls then the (n + 1)-st domino falls

Then you have proven that all dominoes will fall.

Abstract Rewrite Systems Properties

Example

We use induction to prove that:

1 + 2 + . . .+ n =
n · (n + 1)

2
1 Base case n = 0: Then

1 + 2 + . . .+ 0 = 0 and
0 · (0 + 1)

2
= 0

Thus the statement holds for n = 0.

2 Induction step:
Induction hypothesis (IH): Assume the statement hold for n.

We show it for n + 1:

1 + 2 + . . .+ n + (n + 1) =
n · (n + 1)

2
+ (n + 1) by IH

=
n · (n + 1) + 2 · (n + 1)

2
=

(n + 1) · ((n + 1) + 1)

2
Hence the formula holds for all n ∈ N.

Abstract Rewrite Systems Properties

Lemma
↑ ⊆ ↓ ⇐⇒ ↔∗ ⊆ ↓

Second proof: induction.

⇐ Assume ↔∗ ⊆ ↓. We have ↑ ⊆ ↔∗ ⊆ ↓. Hence ↑ ⊆ ↓.

⇒ Assume ↑ ⊆ ↓. We show ↔∗ ⊆ ↓.
We proof by induction on n that a (←∗ · →∗)n b implies a→∗ · ∗← b.

• Base case n = 0: a (←∗ · →∗)0 b. Then a = b and hence a→∗ · ∗← b.

• Induction step n + 1: (assume it holds for n, show it for n + 1)

Let a (←∗ · →∗)n+1 b. Then a (←∗ · →∗)n d ←∗ e →∗ b for some d , e.
• Hence a→∗ f ∗← d for some f by induction hypothesis.
• Now f ←∗ e →∗ b and thus f →∗ · ∗← b since by assumption ↑ ⊆ ↓.

We conclude a→∗ · ∗← b, that is, a ↓ b.
Hence we have shown ↑∗ ⊆ ↓. It follows ↔∗ ⊆ ↓ since ↔∗ ⊆ ↑∗.

Abstract Rewrite Systems Properties

Lemma
Confluence ↑ ⊆ ↓ is equivalent to:
• ← · →∗ ⊆ ↓

• a b

c d

∀a, b, c

∃d

• ∀a, b, c . a→∗ b ∧ a→ c ⇒ ∃d . b →∗ d ∧ c →∗ d

Abstract Rewrite Systems Properties

Lemma
↑ ⊆ ↓ ⇐⇒ ← · →∗ ⊆ ↓

Proof.

⇒ Assume ↑ ⊆ ↓. We have ← · →∗ ⊆ ↑ ⊆ ↓. Hence ← · →∗ ⊆ ↓.

⇐ Assume ← · →∗ ⊆ ↓. We show ↑ ⊆ ↓.

a b

c

By induction on n we show: n← · →∗ ⊆ ↓ for all n.
• Base case n = 0: 0← · →∗ = →∗ ⊆ ↓.
• Induction step n + 1: let c n+1← a→∗ b.

Then c ← d n← a→∗ b for some d , and:

• By induction hypothesis d →∗ e ∗← b.
• Then c →∗ f ∗← e since ← · →∗ ⊆ ↓.

Hence c →∗ · ∗← b.

Abstract Rewrite Systems Properties

Lemma
↑ ⊆ ↓ ⇐⇒ ← · →∗ ⊆ ↓

Proof.

⇒ Assume ↑ ⊆ ↓. We have ← · →∗ ⊆ ↑ ⊆ ↓. Hence ← · →∗ ⊆ ↓.

⇐ Assume ← · →∗ ⊆ ↓. We show ↑ ⊆ ↓.

a b

c
n + 1
d e

f

By induction on n we show: n← · →∗ ⊆ ↓ for all n.
• Base case n = 0: 0← · →∗ = →∗ ⊆ ↓.
• Induction step n + 1: let c n+1← a→∗ b.

Then c ← d n← a→∗ b for some d , and:

• By induction hypothesis d →∗ e ∗← b.
• Then c →∗ f ∗← e since ← · →∗ ⊆ ↓.

Hence c →∗ · ∗← b.

Abstract Rewrite Systems Properties

Lemma
↑ ⊆ ↓ ⇐⇒ ← · →∗ ⊆ ↓

Proof.

⇒ Assume ↑ ⊆ ↓. We have ← · →∗ ⊆ ↑ ⊆ ↓. Hence ← · →∗ ⊆ ↓.

⇐ Assume ← · →∗ ⊆ ↓. We show ↑ ⊆ ↓.

a b

c

d
n

e

IH

f

By induction on n we show: n← · →∗ ⊆ ↓ for all n.
• Base case n = 0: 0← · →∗ = →∗ ⊆ ↓.
• Induction step n + 1: let c n+1← a→∗ b.

Then c ← d n← a→∗ b for some d , and:

• By induction hypothesis d →∗ e ∗← b.
• Then c →∗ f ∗← e since ← · →∗ ⊆ ↓.

Hence c →∗ · ∗← b.

Abstract Rewrite Systems Properties

Lemmata

1 SN =⇒ WN

2 SN ⇐=× WN a b

3 CR =⇒ NF =⇒ UN =⇒ UN→

4 UN ⇐=× UN→ a
b

c
d

e

5 NF ⇐=× UN a b c

6 CR ⇐=× NF a b c

7 CR ⇐⇒ ↔∗ ⊆ ↓ ⇐⇒ ↔∗ = ↓ ⇐⇒ ← · →∗ ⊆ ↓

8 WN & UN→ =⇒ CR

9 CR =⇒ WCR

10 CR ⇐=× WCR a b c d

11 SN & WCR =⇒ CR Newman’s Lemma

Abstract Rewrite Systems Properties

Definitions

• WCR local confluence or weak Church-Rosser property

• ← · → ⊆ ↓
• a

b c

d

∀a, b, c

∃d

Abstract Rewrite Systems Properties

Lemmata

1 SN =⇒ WN

2 SN ⇐=× WN a b

3 CR =⇒ NF =⇒ UN =⇒ UN→

4 UN ⇐=× UN→ a
b

c
d

e

5 NF ⇐=× UN a b c

6 CR ⇐=× NF a b c

7 CR ⇐⇒ ↔∗ ⊆ ↓ ⇐⇒ ↔∗ = ↓ ⇐⇒ ← · →∗ ⊆ ↓

8 WN & UN→ =⇒ CR

9 CR =⇒ WCR

10 CR ⇐=× WCR a b c d

11 SN & WCR =⇒ CR Newman’s Lemma

Abstract Rewrite Systems Properties

Summary

CR

SN WN

WCR NF UN UN→

& &

Definitions

• semi-completeness

• CR & WN
• every element has unique normal form

• completeness

• CR & SN

Abstract Rewrite Systems Properties

Definition

• diamond property ⋄
• ← · → ⊆ → · ←
• a

b c

d

∀a, b, c

∃d

Lemma

An ARS A = ⟨A,→⟩ is confluent if → has the diamond property.

Proof.
Exercise.

Abstract Rewrite Systems Properties

Lemma

ARS A = ⟨A,→1⟩ is confluent if
• →1 ⊆→2 ⊆ →∗

1

for a confluent relation →2 on A.

Proof.
Assume →2 is confluent, that is, ∗

2← · →∗
2 ⊆ →∗

2 · ∗2←.

• From →1 ⊆ →2 follows →∗
1 ⊆ →∗

2 .

• Moreover →∗
2 ⊆ →∗

1 since →∗
1 is transitive and contains →2.

Hence →∗
1 = →∗

2 .
=⇒ ∗

1← · →∗
1 ⊆ →∗

1 · ∗1←

Newman’s Lemma

Outline

Overview

Examples

Abstract Rewrite Systems

Newman’s Lemma

Properties of Elements

ARSs with Multiple Relations

Newman’s Lemma

Well-Founded Induction

given

• strongly normalizing ARS A = ⟨A,→⟩
• property P over the elements of A

to conclude

• ∀a ∈ A : P(a)

it is sufficient to prove

• if P(b) for every b with a→ b︸ ︷︷ ︸
induction hypothesis

then P(a)

for arbitrary element a(
∀a :

(
∀b : a→ b =⇒ P(b)

)
=⇒ P(a)

)
=⇒ ∀a : P(a)

Newman’s Lemma

Newman’s Lemma

SN(A) & WCR(A) =⇒ CR(A)

Proof.

a

b1 c1

b c

WCR

d1IH

d2

d3

IH

induction hypothesis CR(c1)

∀a′ : if a→ a′ then CR(a′)

Properties of Elements

Definitions (Properties of Elements)

Let ⟨A,→⟩ be an ARS. An element a ∈ A is called:

• SN strongly normalizing or terminating

if a admits no infinite rewrite sequence a = a1 → a2 → . . .

• WN weakly normalizing

if ∃b. a→! b

• CR confluent or Church Rosser

if ∀b, c . (c ∗← a→∗ b ⇒ ∃d . c →∗ d ∗← b)

• WCR weakly confluent or weakly Church Rosser

if ∀b, c . (c ← a→ b ⇒ ∃d . c →∗ d ∗← b)

An ARS has the property if all its elements have the respective property.

Properties of Elements

Example

a

b c d

e

CR,WCR

WN,WCR WN,WCR SN,WN,CR,WCR

SN,WN,CR,WCR

ARSs with Multiple Relations

ARSs with Multiple Relations

Definitions

• abstract rewrite system (ARS) is set A with binary relations →i for i ∈ I

a b c d

e f

g

1

2 1 1

21

1

3

1

ARS A = ⟨A,→1,→2,→3⟩
• A = {a, b, c, d, e, f, g}

• →1 =

{
(a, e), (b, c), (c, d),

(e, b), (e, g), (f, g)

}
• →2 =

{
(b, a), (c, f)

}
• →3 =

{
(f, e)

}
• → =→1 ∪→2 ∪→3

• →12 =→1 ∪→2, →13 =→1 ∪→3, . . .

ARSs with Multiple Relations

Definition

Let A = ⟨A,→1,→2⟩ be an ARS.

• →1 commutes with →2

• ∗
2← · →∗

1 ⊆ →∗
1 · ∗2←

• a

b c

d

∀a, b, c

∃d

2 1

1 2

• →1 commutes weakly with →2

•
2← · →1 ⊆ →∗

1 · ∗2←
• a

b c

d

∀a, b, c

∃d

2 1

1 2

