\begin{frame}
\small
\frametitle{Induction}
\begin{lemma}[Induction]
\smallskip
To prove that a statement $P(n)$ holds for all $n \in \NN$ do:
\begin{enumerate}
\item
The \alert<2>{base case:}\\
show that the statement holds for $n = 0$.
\item
The \alert<3>{inductive step}:\\ show for all $n$ that if the $P(n)$ holds, then also $P(n+1)$ holds.
\end{enumerate}
\end{lemma}
\smallskip
\begin{example}<4->
\begin{minipage}{.3\textwidth}
\begin{tabular}{c}
\includegraphics[width=3cm]{../graphics/domino.png}\\
{\tiny Wikipedia}
\end{tabular}
\end{minipage}
\begin{minipage}{.65\textwidth}
\begin{itemize}
\item<5-> Base case: proof that the first domino falls
\item<6-> Induction step: proof that if the $n$-th domino falls then the $(n+1)$-st domino falls
\end{itemize}
\onslide<7->
Then you have proven that all dominoes will fall.
\end{minipage}
\end{example}
\end{frame}