\begin{frame}
\frametitle{Exercises}
Meaning of the symbols:
\begin{talign}
a: \quad& \text{Alice} &
L(x,y): \quad & \text{$x$ likes $y$}
\end{talign}
Translate the following sentences into predicate logic:
\bigskip
\begin{alertblock}{}
Everybody likes at most 2 \textit{other} people.
\end{alertblock}
\pause\bigskip
Note that \emph{at most} means that it can be $0$, $1$ or $2$ !
\pause\bigskip
\begin{exampleblock}{}
\vspace{-1.5ex}
\begin{talign}
\myall{x}{\myex{y_1}{\myex{y_2}{\myall{z}{
\big(\; L(x,z) \wedge z \ne x \;\to\; z = y_1 \vee z = y_2 \;\big)
}}}}
\end{talign}
\end{exampleblock}
\pause\smallskip
or, equivalently
\begin{exampleblock}{}
\vspace{-1.5ex}
\begin{talign}
\myall{x}{\myall{y_1}{\myall{y_2}{\myall{y_3}{
\big(\; &L(x,y_1) \wedge L(x,y_2) \wedge L(x,y_3) \\
&\wedge x \ne y_1 \wedge x \ne y_2 \wedge x \ne y_3 \\
&\quad\to y_1 = y_2 \vee y_2 = y_3 \vee y_1 = y_3 \;\big)
}}}}
\end{talign}
\end{exampleblock}
\vspace{10cm}
\end{frame}