\begin{frame}
\frametitle{Exercises}
\begin{alertblock}{}
Assume you want to disprove
\begin{talign}
\phi \vdash \psi
\end{talign}
How can the soundness or completeness theorem help?
\end{alertblock}
\pause
\begin{exampleblock}{}
To show that there is no possible proof might be difficult.
\pause\medskip
It is easier to give a counter-model.
\medskip\pause
That is, a model $\mathcal{M}$ and environment $\ell$ such that
\begin{talign}
\mathcal{M} \models_\ell \phi &&\text{ and }&& \mathcal{M} \not\models_\ell \psi
\end{talign}
\pause
Then we know that $\phi \not\models \psi$.
\medskip\pause
By the soundness we have
\begin{talign}
\phi \vdash \psi \;\implies\; \phi \models \psi
\end{talign}
\pause
Hence we conclude $\phi \not\vdash \psi$.
\end{exampleblock}
\end{frame}