\begin{frame}[fragile,t]{Partial and Total Correctness}
A roundabout implementation of the successor function:
\begin{exampleblock}{$\forestgreen{\texttt{Succ}}$}
\begin{lstlisting}
a = x + 1;
if (a - 1 == 0) {
y = 1;
} else {
y = a;
}
\end{lstlisting}
\end{exampleblock}
\pause\bigskip
We should be able to prove:
\begin{itemize}
\pause
\item
$\satisfiespar \hoaretriple{\true}{\forestgreen{\texttt{Succ}}}{y = x + 1}$
\pause
\item
$\satisfiestot \hoaretriple{\true}{\forestgreen{\texttt{Succ}}}{y = x + 1}$
\end{itemize}
\end{frame}