\begin{frame}[t]{Validity is Undecidable}
\begin{block}{Theorem}
The \emph{validity problem} in predicate logic is \alert{undecidable}.
\end{block}
\begin{proof}[Proof structure]
There is a computable function $\dm{r}$ (\forestgreen{see previous slides}) that maps
instances of PCP to instances of the validity problem:
\begin{talign}
\dm{r} \funin \;\; \forestgreen{I} \;\; & \longmapsto \;\; \aformi{\forestgreen{I}}
\\[-1ex]
\intertext{such that it holds:}
\\[-3ex]
\text{$\forestgreen{I}$ has a solution}
\;\; & {\color{red}\Longleftrightarrow} \;\;
\satisfies \!\! \aformi{\forestgreen{I}}
\text{$\;\;$ (i.e.\ $\aformi{\forestgreen{I}}$ is valid}) \tag{$\star$} \label{eq:correctness:reduction}
\end{talign}
\vspace*{-2ex}
Then if we had a program \emph{deciding validity} for predicate logic,
we would obtain a PCP-solver. $\;$ \alert{$\xmark$}
\renewcommand{\qed}{}
\end{proof}
\begin{description}
\pause
\item[`$\alert{\Longleftarrow}$' in \eqref{eq:correctness:reduction}:]
just shown \alert{\checkmark}
\pause
\item[`$\alert{\Longrightarrow}$' in \eqref{eq:correctness:reduction}:]
see Huth \& Ryan p.\ 134, 135
\end{description}
\end{frame}