\begin{frame}{Encoding a PCP-Instance into a Formula}
\begin{goal}{}
Now given a PCP instance
\begin{talign}
\forestgreen{I} =
\tuple{\pair{\forestgreen{w_1}}{\forestgreen{v_1}},
\pair{\forestgreen{w_2}}{\forestgreen{v_2}},
\ldots,
\pair{\forestgreen{w_k}}{\forestgreen{v_k}}}
\end{talign}
\pause
we encode $\forestgreen{I}$ into a formula $\aformi{\!\forestgreen{I}}$ of predicate logic as follows:
\pause{}
%
\begin{align*}
\aformi{\!\forestgreen{I}}
& \:\defdby\:
\formula{\logimp{\logand{\aformi{1}}{\aformi{2}}}{\aformi{3}}}
\\[2ex]
\mpause[1]{
\aformi{1}
& \:\defdby\:
\formula{\bigwedge_{i=1,\ldots,k} \!\!\! \binpred{P}{\unfunci{f}{\forestgreen{w_i}}{\const{e}}}{\unfunci{f}{\forestgreen{v_i}}{\const{e}}}}
} \\
\mpause{
\aformi{2}
& \:\defdby\:
\formula{\forallst{x}{\forallst{y}{ \bigl( \binpred{P}{x}{y} \logimpinf
\bigwedge_{i=1,\ldots,k} \!\!\! \binpred{P}{\unfunci{f}{\forestgreen{w_i}}{x}}{\unfunci{f}{\forestgreen{v_i}}{y}}
\bigr) }}}
} \\
\mpause{
\aformi{3}
& \:\defdby\:
\formula{\existsst{z}{\:\binpred{P}{z}{z}}}
}
\end{align*}
\end{goal}
\smallskip\updatepause
The idea behind $\sbinpred{P}$ is:
\begin{talign}
\binpred{P}{x}{y} \;\iff\; \text{$\pair{x}{y}$ can be constructed using dominos in $\forestgreen{I}$}
\end{talign}
\end{frame}