\begin{frame}[t]{Completeness Theorem}
\begin{block}{Theorem (Completeness of $\sderives$ with respect to $\ssatisfies$)}
For all formulas\/ $\aform$, and every set\/ $\asetforms$ of formulas:
\begin{talign}
\asetforms \satisfies \aform \;\;\;\Longrightarrow\;\;\; \asetforms \derives \aform
\end{talign}
\end{block}
\pause\medskip
Reformulation and explanation:
\begin{goal}{}
The derivations rules are \emph{strong enough}
to derive \emph{all valid semantic entailment statements}.
\pause\medskip
Thus \emph{more} derivation rules are \emph{not necessary},\\
and in this sense these rules are \emph{complete}.
\end{goal}
\pause\medskip
Proof of the theorem: non-trivial (first one by Kurt G\"{o}del, 1930)
\end{frame}