\begin{frame}
\frametitle{Transitive Frames: $\some\some p \to \some p$}
\begin{goal}{Theorem}
\begin{malign}
\F \models \some\some p \to \some p \quad\iff\quad \text{the frame $\F$ is transitive}
\end{malign}
\end{goal}
\pause
\begin{block}{Proof ($\Leftarrow$)}
\begin{itemize}
\pause
\item Let $\F = (W,R)$ be a frame where $R$ is transitive.
\pause
\item Let $L$ be an arbitrary labelling, and $x$ a world in $W$.
\pause
\item We show $x \fc \some\some p \to \some p$.\\
\pause
That is, if $x\fc \some\some p$, then also $x\fc \some p$.
\pause
\item Thus assume that $x \fc \some\some p$.
\pause
\item Then there exists $y\in W$ with $R(x,y)$ and $y \fc \some p$.
\pause
\item Then there exists $z \in W$ with $R(y,z)$ and $z \fc p$.
\pause
\item Because of transitivity of $R$ we have $R(x,z)$.
\pause
\item Hence $x \fc \some p$.
\end{itemize}
\end{block}
\vspace{10cm}
\end{frame}