\begin{frame}
\frametitle{Reflexive Frames: $\all p \to p$}
Recall that \emph{reflexivity} means: $\myall{x}{R(x,x)}$.
\smallskip
\begin{goal}{Theorem}
\begin{malign}
\F \models \all p \to p \quad\iff\quad \text{the frame $\F$ is reflexive}
\end{malign}
\end{goal}
\pause\medskip
\alt<-8>{
\begin{block}{Proof}
\begin{itemize}
\item [$\Leftarrow$]
Assume that $\F = \pair{W}{R}$ is reflexive.
\smallskip\pause
We show that $\F \models \all p \to p$.
\smallskip\pause
Let $L$ be an arbitrary labelling and $\M = \langle W,R,L \rangle$.
\smallskip\pause
We show for every world $x$:\; $\M,x \fc \all p \to p$.
\smallskip\pause
If \;\;$x \fc \all p$\;\;, then \pause \;\;$x \fc p$\;\; since $R(x,x)$.
\smallskip\pause
Hence $\M,x \fc \all p \to p$.
\end{itemize}
\end{block}
}{
\pause[9]
\begin{block}{Proof}
\begin{itemize}
\item [$\Rightarrow$]
Assume that $\F \models \all p \to p$.
\pause
We show that $\F$ is reflexive.
\smallskip\pause
Assume, for a contradiction, $\F$ was not reflexive.
\smallskip\pause
Then there is a world $a$ with $\neg R(a,a)$.
\smallskip\pause
Let $\M = \langle W,R,\lab{L} \rangle$ where $\lab{L}$ is given by:\pause
\begin{talign}
\lab{L}(a) &= \emptyset &&&
\lab{L}(w) &= \{\;p\;\} \quad \text{for every world $w \neq a$}
\end{talign}
\pause
Then $a \fc \all p$ since $p$ holds in all worlds $\ne a$ \;and\; $\neg R(a,a)$.\\
\smallskip\pause
But $a \not\fc p$. \pause Thus $a \not\fc \all p \to p$.\\
\smallskip\pause
Thus $\F \not\fc \all p \to p$\pause; a contradiction! \pause Hence $\F$ is reflexive.
\end{itemize}
\end{block}
}
\vspace{5cm}
\onslide<19>{}
\end{frame}