\begin{frame}{Predicate Logic with Equality}
\begin{goal}{}
Fixed binary predicate symbol $\sequalto$ for equality.
\end{goal}
\pause\medskip
Notation:
\begin{itemize}
\item infix notation $\equalto{x}{y}$ instead of ${\sequalto}(x,y)$
\item the notation $\notequalto{x}{y}$ is an abbreviation of $\lognot{\equalto{x}{y}}$
\end{itemize}
\pause\medskip
\begin{goal}{}
Uniform, fixed interpretation of $\sequalto$ in every model.
\pause\medskip
If the model $\amodel$ has domain $A$, then the interpretation of $\sequalto$ is
\begin{talign}
\intin{\sequalto}{\model{\amodel}} \;\; = \;\; \descsetexp{\pair{a}{a}}{a\in\model{\adomain}}
\end{talign}
\end{goal}
\pause\medskip
Formulas may use $\sequalto$ like a predicate symbol (but ${\sequalto} \notin \asetpreds$).
\end{frame}