\begin{frame}[t]{The Combination of $\:\formula{\sexists}\:$ and $\,\formula{\slogand}\,$}
Another frequent combination is that of $\,\formula{\sexists}\,$ and $\,\formula{\slogand}$, as in
\begin{talign}
\formula{\existsst{x}{(\logand{\unpred{L}{x}}{\unpred{C}{x}})}}
\end{talign}
\pause\vspace{-2ex}
\begin{block}{We specify meanings for \ldots}
\begin{malign}
\formula{\unpred{L}{x}} & \funin \sentence{\black{$x$} is a logician}
&
\formula{\const{r}} & \funin \sentence{Rosalie}
\\
\formula{\binpred{K}{x}{y}} & \funin \sentence{\black{$x$} knows \black{$y$}}
&
\formula{\const{j}} & \funin \sentence{Jan}
\end{malign}
\end{block}
\pause\bigskip
We translate the formula
$\formula{\existsst{x}{(\logand{\unpred{L}{x}}{\unpred{C}{x}})}}$
step by step:
%
\begin{itemize}\vspace*{0.5ex}\setlength{\itemsep}{0.5ex}
\pause
\item for some \black{$x$} it holds that \black{$x$} is a logician, and that \black{$x$} is clever
\pause
\item there is an \black{$x$} that is logician and clever
\pause
\item there is a clever logician
\pause
\item \textit{some} logicians are clever
\end{itemize}
\end{frame}