\begin{frame}
\frametitle{Examples: Semantics Intuitive}
\begin{alertgoal}{}
This is a typical exam task!
\end{alertgoal}
\begin{exampleblock}{}
\vspace{-1ex}
\begin{talign}
& \myall{x}{\myall{y}{\big(R(x,y) \vee R(y,x)\big)}} \\
& \wedge \myall{x}{\myall{y}{\myall{z}{\big(R(x,y) \wedge R(y,z) \to R(x,z)\big)}}} \\
& \wedge \myall{x}{\myex{y}{\neg R(x,y)}}
\end{talign}
\pause
Find a model for this formula, or explain why there is none.
\medskip
\pause
This formula has a model:
\begin{itemize}
\item universe $\nat = \{0,1,2,3,4,5\ldots\}$
\item $R(x,y)$ if $x \ge y$
\end{itemize}
\pause
We check that the formula holds in the model:
\begin{itemize}
\pause
\item for all $x,y \in \nat$, we have $x \ge y \vee y \ge x$
\pause
\item for all $x,y,z \in \nat$, we have $x \ge y \wedge y \ge z \to x \ge z$
\pause
\item for every $x\in\nat$ there is $y\in\nat$ such that $x \not\ge y$
\end{itemize}
\end{exampleblock}
\end{frame}