\begin{frame}
\frametitle{Not Forall and Not Exists}
Let us reconsider two examples
\begin{align*}
\neg\myall{x}{P(x)} &\quad\quad \hint{Not everybody is green.}\\
\myex{x}{\neg P(x)} &\quad\quad \hint{There exists someone who is not green.}
\end{align*}
\pause
\emph{Note that both statements are equivalent!}
\pause
\bigskip
\begin{goal}{}
In general we have the following equivalences:
\begin{talign}
\neg\myall{x}{\phi} \quad\iff\quad \myex{x}{\neg \phi} \\[1ex]
\neg\myex{x}{\phi} \quad\iff\quad \myall{x}{\neg \phi} \\[1ex]
\myall{x}{\phi} \quad\iff\quad \neg\myex{x}{\neg \phi} \\[1ex]
\myex{x}{\phi} \quad\iff\quad \neg\myall{x}{\neg \phi}
\end{talign}
\end{goal}
\pause
Note that all these equivalences follow from each other.
\end{frame}