\begin{frame}
\frametitle{Predicate Logic}
\begin{goal}{}
In propositional logic there are:
\begin{itemize}
\item propositional variables $p,q,r,\ldots$ that can be $\T$ or $\F$
\end{itemize}
\medskip
\pause
In predicate logic there are:
\begin{itemize}
\pause
\item variables $a,b,\ldots$ that represent \aemph{objects} (or \aemph{individuals}),
\pause
\item \aemph{predicates} $P(x)$ or \aemph{relations} $R(x,y)$ on the objects \\
\end{itemize}
\end{goal}
\pause
\smallskip
\begin{exampleblock}{}
\pause
$1$-ary predicates like $P(\_)$ can express properties of objects:
\begin{itemize}
\item e.g. $P(x)$ can express that `$x$ is green'
\end{itemize}
\pause
$2$-ary predicates like $R(\_,\_)$ can express relations:
\begin{itemize}
\item e.g. $R(x,y)$ can express `$x$ knows $y$'.
\end{itemize}
\end{exampleblock}
\pause
\smallskip
\begin{goal}{}
Name natural examples of $3$-ary predicates?
\pause
\begin{itemize}
\item $L(x,y,z)$ = $x,y,z$ are points on same line in the plane
\end{itemize}
\end{goal}
\end{frame}