\begin{frame}
\frametitle{Valuations}
\begin{goal}{}
An \emph{assignment of truth values} to variables is a \emph{valuation}.
\end{goal}
\pause
{\small (In the book, for predicate logic, also called look-up function)}
\pause
\begin{exampleblock}{}
The valuation $\svaluation$ on the previous slide is
\begin{talign}
\valuation{p} = \T && \valuation{q} = \T && \valuation{r} = \F
\end{talign}
\pause
The truth value of $p \vee \neg q \to r$ with this valuation is \pause $\F$.
\end{exampleblock}
\begin{itemize}
\pause
\item
A valuation corresponds to one line in the truth table.
\pause
\item
A truth table systemically considers all possible valuations.
\end{itemize}
\pause
\begin{exampleblock}{}
For \quad $p \vee \neg q \to r$, \quad there are $8 = 2^3$ valuations.
\end{exampleblock}
\end{frame}